화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.48, 16-23, April, 2017
Nano-engineered joining employing surface modified graphite nanomaterials
E-mail:
A new joining technique is reviewed where graphite nanomaterials are introduced at the interface to link the joining thermoplastic substrates and surfaces via massive interatomic bonds and other interactions followed by microwave irradiation. Replicated tests on the “nano-engineered” joints indicated improvement in energy absorption capacity, impact resistance, strength, ductility fatigue resistance of adhesive bonding as compared to conventional adhesive bonding. The demonstrated increase in mechanical properties, high efficiency in CNT-to-CNT and CNT-to-substrate joining and high level of replicability underline the potential for replacement of conventional adhesive bonding techniques with the technique presented.
  1. Monthioux M, Kuznetsov VL, Carbon, 44, 1621 (2006)
  2. Iijima S, Nature, 354, 56 (1991)
  3. Demoustier S, Minoux E, Le Baillif M, Charles M, Ziaei A, Comptes Rendus Phys., 9, 53 (2008)
  4. Katsounaros A, Rajab KZ, Hao Y, Mann M, Milne WI, Appl. Phys. Lett., 98, 203105 (2011)
  5. Avouris P, Appenzeller J, Martel R, Wind SJ, Proc. IEEE, 91, 1772 (2003)
  6. Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F, Small, 9, 1237 (2013)
  7. Wildgoose GG, Banks CE, Compton RG, Small, 2, 182 (2006)
  8. Baughman RH, Zakhidov AA, de Heer WA, Science, 297, 787 (2002)
  9. Jorio A, Dresselhaus G, Dresselhaus MS, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Springer, 2007.
  10. Andrews R, Jacques D, Qian D, Rantell T, Acc. Chem. Res., 35, 1008 (2002)
  11. Tamrin K, Nukman Y, Zakariyah S, Mater. Manuf. Process., 28, 857 (2013)
  12. Baker AAB, Kelly DW, Composite Materials for Aircraft Structures, AIAA, 2004.
  13. Cam G, Kocak M, Int. Mater. Rev., 43, 1 (1998)
  14. Snyder GJ, Toberer ES, Nat. Mater., 7(2), 105 (2008)
  15. Prater T, Mater. Manuf. Process., 26, 636 (2011)
  16. Williams JC, Starke EA, Acta Mater., 51, 5775 (2003)
  17. Ashby MF, Johnson K, Materials and Design: The Art and Science of Material Selection in Product Design, Butterworth-Heinemann, 2013.
  18. Clemens H, Mayer S, Adv. Eng. Mater., 15, 191 (2013)
  19. Barnes T, Pashby I, J. Mater. Process. Technol., 99, 72 (2000)
  20. Stokes VK, Polym. Eng. Sci., 29, 1310 (1989)
  21. Pantelakis S, Tserpes K, Sci. China Phys. Mech. Astron., 57, 2 (2014)
  22. Wang R, Welsch G, J. Prosthet. Dent., 74, 521 (1995)
  23. Su HC, Chen CH, Chen YC, Yao DJ, Chen H, Chang YC, Yew TR, Carbon, 48, 805 (2010)
  24. Chen B, Oppenheimer PG, Shean TAV, Wirth CT, Hofmann S, Robertson J, J. Phys. Chem. C, 116, 20047 (2012)
  25. Luo Y, Zhao Y, Cai J, Duan Y, Du S, Mater. Des., 33, 405 (2012)
  26. Rahmat M, Hubert P, Compos. Sci. Technol., 72, 72 (2011)
  27. Das S, Lahiri D, Lee DY, Agarwal A, Choi W, Carbon, 59, 121 (2013)
  28. Khan U, May P, Porwal H, Nawaz K, Coleman JN, ACS Appl. Mater. Interfaces, 5, 1423 (2013)
  29. Visco AM, Brancato V, Torrisi L, Cutroneo M, Int. J. Polym. Anal. Charact., 19, 489 (2014)
  30. Raza MA, Westwood AVK, Brown AP, Stirling C, J. Mater. Sci. -Mater. Electron., 23, 1855 (2012)
  31. Lahiri I, Lahiri D, Jin S, Agarwal A, Choi W, ACS Nano, 5, 780 (2011)
  32. Knutton S, Baldwin T, Williams P, McNeish A, Infect. Immun., 57, 1290 (1989)
  33. Truong VK, Lapovok R, Estrin YS, Rundell S, Wang JY, Fluke CJ, Crawford RJ, Ivanova EP, Biomaterials, 31, 3674 (2010)
  34. Hori K, Matsumoto S, Biochem. Eng. J., 48, 424 (2010)
  35. Da Silva GR, Da Silva-Cunha A, Vieira LC, Silva LM, Ayres E, Orefice RL, Fialho SL, Saliba JB, Behar-Cohen F, J. Mater. Sci., 24, 1309 (2013)
  36. Wang C, Chen T, Chang S, Chin T, Cheng S, Appl. Phys. Lett., 90, 103111 (2007)
  37. Caloz C, Itoh T, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.
  38. Davis CC, Lasers and Electro-Optics: Fundamentals and Engineering, Cambridge University Press, 2014.
  39. West AR, Solid State Chemistry and Its Applications, John Wiley & Sons, 2013.
  40. Kappe CO, Stadler A, Dallinger D, Microwaves in Organic and Medicinal Chemistry, John Wiley & Sons, 2012.
  41. Yarlagadda PKDV, Stoynov LA, Kim IS, J. Mater. Process. Technol., 113, 160 (2001)
  42. MacKenzie K, Dunens O, Harris AT, Sep. Purif. Technol., 66(2), 209 (2009)
  43. Koehl WF, Buckley BB, Heremans FJ, Calusine G, Awschalom DD, Nature, 479(7371), 84 (2011)
  44. Cao MS, Song WL, Hou ZL, Wen B, Yuan J, Carbon, 48, 788 (2010)
  45. Srivastava RK, Narayanan T, Mary AR, Anantharaman M, Srivastava A, Vajtai R, Ajayan PM, Appl. Phys. Lett., 99, 113116 (2011)
  46. Yu L, Li B, Sheng L, An K, Zhao X, J. Alloy. Compd., 575, 123 (2013)
  47. Kolodiazhnyi T, Pumera M, Small, 4, 1476 (2008)
  48. Vazquez E, Prato M, ACS Nano, 3, 3819 (2009)
  49. Liu G, Wang L, Chen G, Hua S, Ge C, Zhang H, Wu R, J. Alloy. Compd., 514, 183 (2012)
  50. Cai R (2013).(2)
  51. Chen M, Hellgeth JW, Ward TC, Mcgrath JE, Polym. Eng. Sci., 35(2), 144 (1995)
  52. Roy M, Nelson J, MacCrone R, Schadler L, Reed C, Keefe R, IEEE Trans. Dielectr. Electr. Insul., 12, 629 (2005)
  53. Wang Y, Iqbal Z, Mitra S, J. Am. Chem. Soc., 128, 95 (2005)
  54. Liu J, Che R, Chen H, Zhang F, Xia F, Wu Q, Wang M, Small, 8, 1214 (2012)
  55. Terrones M, Banhart F, Grobert N, Charlier JC, Terrones H, Ajayan PM, Phys. Rev. Lett., 89, 075505 (2002)
  56. Kozinsky B, Marzari N, Phys. Rev. Lett., 96, 166801 (2006)
  57. Imholt TJ, Dyke CA, Hasslacher B, Perez JM, Price DW, Roberts JA, Scott JB, Wadhawan A, Ye Z, Tour JM, Chem. Mater., 15, 3969 (2003)
  58. Baghurst DR, Mingos DMP, J. Chem. Soc.-Chem. Commun., 674 (1992)