화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.48, 24-35, April, 2017
Effect of fuel distribution on turbulence and combustion characteristics of a micro gas turbine combustor
E-mail:
Numerical analysis of lean-premixed flames is utilized to investigate the correlation between turbulence and combustion, fuel-air mixing, and NOx emission using three types of micro gas turbine combustors. Swirl flows generating vortex breakdown and flow recirculation contributing to mixing uniformity are improved by interaction of burners. Mixing plays an important role in flame dynamics and NOx emission by means of the unmixedness parameter. To discuss the correlation between flame characteristics and vorticity structures, progress variable c is introduced. The flame stability is enhanced by ring-shaped, large-scale vorticity structures, and air-fuel mixing is increased by momentum and kinetic energy.
  1. Ackermann T, Andersson G, Soder L, Electr Pow Syst. Res., 57, 195 (2001)
  2. Minakawa K, Yuasa S, J. Environ. Eng., 2, 590 (2007)
  3. Stiller C, Thorud B, Bolland O, Kandepu R, Imsland L, J. Power Sources, 158(1), 303 (2006)
  4. Bruno JC, Ortega-Lopez V, Coronas A, Appl. Energy, 86(6), 837 (2009)
  5. Pilavachi PA, Appl. Therm. Eng., 20, 1421 (2000)
  6. Pilavachi PA, Appl. Therm. Eng., 22, 2003 (2002)
  7. Nascimento MAR, Lora ES, Correa PSP, Andrade RV, Rendon MA, Venturini OJ, Ramirez GAS, Energy, 33(2), 233 (2008)
  8. Gupta AK, Lilley DG, Syred N, Swirl Flows, Abacus Press, London, 1984.
  9. Cheng RK, Combust. Flame, 101, 1 (1995)
  10. Kang W, Choi B, Kim H, J. Ind. Eng. Chem., 19(4), 1406 (2013)
  11. Seo CK, Choi B, J. Ind. Eng. Chem., 25, 239 (2015)
  12. Feng T, Lu L, J. Ind. Eng. Chem., 28, 97 (2015)
  13. Choi CY, Sung YM, Choi GM, Kim DJ, Int. J. Nav. Archit. Ocean Eng., 7, 1020 (2015)
  14. Cheng TS, Chao YC, Wu DC, Yuan T, Lu CC, Cheng CK, Chang JM, Proc. Combust. Inst., 27, 1229 (1998)
  15. Choi GM, Tanahashi M, Miyauchi T, Proc. Combust. Inst., 30, 1807 (2005)
  16. Alekseenko SV, Dulin VM, Kozorezov YS, Markovich DM, Shtork SI, Tokarev MP, Flow. Turb. Combust., 87, 569 (2011)
  17. Cho CH, Baek GM, Sohn CH, Cho JH, Kim HS, Appl. Therm. Eng., 59, 454 (2013)
  18. Huang Y, Sung HG, Hsieh SY, Yang V, J. Propul. Power, 19, 782 (2003)
  19. Huang Y, Yang V, Proc. Combust. Inst., 30, 1775 (2005)
  20. Tanaka S, Shimura M, Fukushima N, Tanahashi M, Miyauchi T, Proc. Combust. Inst., 33, 3293 (2011)
  21. Lesieur M, Metais O, Comte P, Large-Eddy Simulations of Turbulence, Cambridge University Press, Cambridge, 2005.
  22. Pope SB, Turbulent Flows, Cambridge University Press, Cambridge, 2000.
  23. Fletcher CAJ, Computational Techniques for Fluid Dynamics, Springer, Berlin, 1991.
  24. Ferziger JH, Peric M, Computational Methods for Fluid Dynamics, Springer, Berlin, 1996.
  25. Poinsot T, Veynante D, Theoretical and Numerical Combustion, Edwards, Philadelphia, 2005.
  26. Peters N, Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
  27. ANSYS Inc, ANSYS Fluent Theory Guide, (2010) .
  28. Polike W, Dobbeling W, Sattelmayer T, Nicol DG, J. Eng. Gas Turb. Power, 118, 775 (1996)
  29. Zeldovich YB, Acta Physicochim. URSS, 21, 577 (1946)
  30. Hanson RK, Saliman S, Combust. Chem., 361 (1984)
  31. Fenimore CP, Proc. Combust. Inst., 13, 373 (1971)
  32. Biagioli F, Guthe F, Combust. Flame, 151(1-2), 274 (2007)
  33. Zheng Y, Zhu M, Martinez DM, Jiang X, Comput. Fluids., 88, 702 (2013)
  34. Hawkes ER, Chen JH, Combust. Flame, 144(1-2), 112 (2006)