Korean Journal of Chemical Engineering, Vol.34, No.4, 1013-1020, April, 2017
Optimization of biodiesel production process in a continuous microchannel using response surface methodology
E-mail:
We assessed the biodiesel production process in a continuous microchannel through preparation of a heterogeneous catalyst (CaO/MgO) from demineralized water plant sediment. This mixed oxide catalyst was used for transesterification of rapeseed oil as feedstock by methanol to produce biodiesel fuel at various conditions. A microchannel, utilized as a novel reactor, was applied to convert rapeseed oil into biodiesel in multiple steps. The effects of the process variables, such as catalyst concentration, methanol to oil volume ratio, n-hexane to oil volume ratio, and reaction temperature on the purity of biodiesel, were carefully investigated. Box-Behnken experimental design was employed to obtain the maximum purity of biodiesel response surface methodology. The optimum condition for the production of biodiesel was the following: catalyst concentration of 7.875 wt%, methanol to oil volume ratio of 1.75 : 3, n-hexane to oil volume ratio of 0.575 : 1, and reaction temperature of 70 °C.
- Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G, Energy Conv. Manag., 63, 138 (2012)
- Leung DYC, Wu X, Leung MKH, Appl. Energy, 87(4), 1083 (2010)
- Van Gerpen J, Fuel Process. Technol., 86(10), 1097 (2005)
- Mendow G, Querini CA, Chem. Eng. J., 228, 93 (2013)
- Kang H, Song H, Ha J, Na BK, Korean J. Chem. Eng., 33(7), 2084 (2016)
- Meher LC, Vidya SD, Naik, Renew. Sust. Energ. Rev., 10, 248 (2006)
- Huang M, Luo J, Fang Z, Li H, Appl. Catal. B: Environ., 190, 103 (2016)
- Stojkovic IJ, Stamenkovic OS, Povrenovic DS, Veljkovic VB, Renew. Sust. Energ. Rev., 32, 1 (2014)
- Shi W, Li H, Zhou R, Zhang H, Du Q, Bioresour. Technol., 210, 43 (2016)
- Pourzolfaghar H, Abnisa F, Daud WMAW, Aroua MK, Renew. Sust. Energ. Rev., 61, 245 (2016)
- Bonet-Ragel K, Canet A, Benaiges MD, Valero F, Fuel, 161, 12 (2015)
- Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef SA, Renew. Sust. Energ. Rev., 16, 2070 (2012)
- Kouzu M, Hidaka J, Fuel, 93(1), 1 (2012)
- Borges ME, Diaz L, Renew. Sust. Energ. Rev., 16, 2839 (2012)
- Zabeti M, Daud WMAW, Aroua MK, Fuel Process. Technol., 90(6), 770 (2009)
- Moradi GR, Hojabri Z, Mohadesi M, React. Kinet. Mech. Cat., 113, 169 (2014)
- Cuba-Torres CM, Marin-Flores O, Owen CD, Wang ZH, Garcia-Perez M, Norton MG, Ha S, Fuel, 146, 132 (2015)
- Lee HV, Juan JC, Taufiq-Yap YH, Renew. Energy, 74, 124 (2015)
- Marinkovic DM, Stankovic MV, Velicovic AV, Avramovic JM, Miladinovic MR, Stamenkovic OO, Veljkovic VB, Jovanovic DM, Renew. Sust. Energ. Rev., 56, 1387 (2016)
- Nakatani N, Takamori H, Takeda K, Sakugawa H, Bioresour. Technol., 100(3), 1510 (2009)
- Granados ML, Poves MDZ, Alonso DM, Mariscal R, Galisteo FC, Moreno-Tost R, Santamaria J, Fierro JLG, Appl. Catal. B: Environ., 73(3-4), 317 (2007)
- Kim D, Seol SK, Chang WS, Korean J. Chem. Eng., 33(2), 527 (2016)
- Pukale DD, Maddikeri GL, Gogate PR, Pandit AB, Pratap AP, Ultrason. Sonochem., 22, 278 (2015)
- Santacesaria E, Di Serio M, Tesser R, Turco R, Tortorelli M, Russo V, Chem. Eng. Process., 52, 47 (2012)
- Aghel B, Rahimi M, Sepahvand A, Alitabar M, Ghasempour HR, Energy Conv. Manag., 84, 541 (2014)
- Santana HS, Tortola DS, Silva JL, Taranto OP, Energy Conv. Manag., DOI:10.1016/j.enconman.2016.03.089. (2016)
- Alenezi R, Santos RCD, Raymahasay S, Leeke GA, Renew. Energy, 53, 242 (2013)
- Shin HY, Lim SM, Kang SC, Bae SY, Fuel Process. Technol., 98, 1 (2012)
- Han X, Yan W, Hung CT, He Y, Wu PH, Liu LL, Huang SJ, Liu SB, Korean J. Chem. Eng., 33(7), 2063 (2016)
- Bynes AN, Eide I, Jorgensen KB, Fuel, 137, 94 (2014)
- Sendzikiene E, Sinkuniene D, Kazanceva I, Kazancev K, Renew. Energy, 87, 266 (2016)
- Mostafaei M, Ghobadian B, Barzegar M, Banakar A, Ultrason. Sonochem., 27, 54 (2015)
- Roschat W, Siritanon T, Kaewpuang T, Yoosuk B, Promarak V, Bioresour. Technol., 209, 343 (2016)
- Encinar JM, Pardal A, Sanchez N, Fuel, 166, 51 (2016)
- Khang DS, Razon LF, Madrazo CF, Tan RR, Chem. Eng. Res. Des., 92(8), 1512 (2014)
- Ngamcharussrivichai C, Wiwatnimit W, Wangnoi S, J. Mol. Catal. A-Chem., 276(1-2), 24 (2007)
- Wang Y, Ou SY, Liu PZ, Xue F, Tang SZ, J. Mol. Catal. A-Chem., 252(1-2), 107 (2006)
- Somnuk K, Niseng S, Prateepchaikul G, Energy Conv. Manag., 80, 374 (2014)
- Patil PD, Deng SG, Fuel, 88(7), 1302 (2009)
- Rashid U, Anwar F, Ashraf M, Saleem M, Yusup S, Energy Conv. Manag., 52(8-9), 3034 (2011)
- Salvi B, Panwar N, Renew. Sust. Energ. Rev., 16, 3680 (2012)
- Kafuku G, Mbarawa M, Fuel, 89(9), 2556 (2010)
- Noshadi I, Amin NAS, Parnas RS, Fuel, 94(1), 156 (2012)
- Montgomery DC, Design and Analysis of Experiments, Wiley, New York (2001).
- Yang ZQ, Xie WL, Fuel Process. Technol., 88(6), 631 (2007)
- Omar WNNW, Amin NAS, Biomass Bioenerg., 35(3), 1329 (2011)
- Haaland PD, Experimental design in biotechnology, Marcel Dekker Inc., New York (1989).
- Tang Z, Wang L, Yang J, Eur. J. Lipid Sci. Technol., 110, 747 (2008)