화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.4, 1013-1020, April, 2017
Optimization of biodiesel production process in a continuous microchannel using response surface methodology
E-mail:
We assessed the biodiesel production process in a continuous microchannel through preparation of a heterogeneous catalyst (CaO/MgO) from demineralized water plant sediment. This mixed oxide catalyst was used for transesterification of rapeseed oil as feedstock by methanol to produce biodiesel fuel at various conditions. A microchannel, utilized as a novel reactor, was applied to convert rapeseed oil into biodiesel in multiple steps. The effects of the process variables, such as catalyst concentration, methanol to oil volume ratio, n-hexane to oil volume ratio, and reaction temperature on the purity of biodiesel, were carefully investigated. Box-Behnken experimental design was employed to obtain the maximum purity of biodiesel response surface methodology. The optimum condition for the production of biodiesel was the following: catalyst concentration of 7.875 wt%, methanol to oil volume ratio of 1.75 : 3, n-hexane to oil volume ratio of 0.575 : 1, and reaction temperature of 70 °C.
  1. Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G, Energy Conv. Manag., 63, 138 (2012)
  2. Leung DYC, Wu X, Leung MKH, Appl. Energy, 87(4), 1083 (2010)
  3. Van Gerpen J, Fuel Process. Technol., 86(10), 1097 (2005)
  4. Mendow G, Querini CA, Chem. Eng. J., 228, 93 (2013)
  5. Kang H, Song H, Ha J, Na BK, Korean J. Chem. Eng., 33(7), 2084 (2016)
  6. Meher LC, Vidya SD, Naik, Renew. Sust. Energ. Rev., 10, 248 (2006)
  7. Huang M, Luo J, Fang Z, Li H, Appl. Catal. B: Environ., 190, 103 (2016)
  8. Stojkovic IJ, Stamenkovic OS, Povrenovic DS, Veljkovic VB, Renew. Sust. Energ. Rev., 32, 1 (2014)
  9. Shi W, Li H, Zhou R, Zhang H, Du Q, Bioresour. Technol., 210, 43 (2016)
  10. Pourzolfaghar H, Abnisa F, Daud WMAW, Aroua MK, Renew. Sust. Energ. Rev., 61, 245 (2016)
  11. Bonet-Ragel K, Canet A, Benaiges MD, Valero F, Fuel, 161, 12 (2015)
  12. Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef SA, Renew. Sust. Energ. Rev., 16, 2070 (2012)
  13. Kouzu M, Hidaka J, Fuel, 93(1), 1 (2012)
  14. Borges ME, Diaz L, Renew. Sust. Energ. Rev., 16, 2839 (2012)
  15. Zabeti M, Daud WMAW, Aroua MK, Fuel Process. Technol., 90(6), 770 (2009)
  16. Moradi GR, Hojabri Z, Mohadesi M, React. Kinet. Mech. Cat., 113, 169 (2014)
  17. Cuba-Torres CM, Marin-Flores O, Owen CD, Wang ZH, Garcia-Perez M, Norton MG, Ha S, Fuel, 146, 132 (2015)
  18. Lee HV, Juan JC, Taufiq-Yap YH, Renew. Energy, 74, 124 (2015)
  19. Marinkovic DM, Stankovic MV, Velicovic AV, Avramovic JM, Miladinovic MR, Stamenkovic OO, Veljkovic VB, Jovanovic DM, Renew. Sust. Energ. Rev., 56, 1387 (2016)
  20. Nakatani N, Takamori H, Takeda K, Sakugawa H, Bioresour. Technol., 100(3), 1510 (2009)
  21. Granados ML, Poves MDZ, Alonso DM, Mariscal R, Galisteo FC, Moreno-Tost R, Santamaria J, Fierro JLG, Appl. Catal. B: Environ., 73(3-4), 317 (2007)
  22. Kim D, Seol SK, Chang WS, Korean J. Chem. Eng., 33(2), 527 (2016)
  23. Pukale DD, Maddikeri GL, Gogate PR, Pandit AB, Pratap AP, Ultrason. Sonochem., 22, 278 (2015)
  24. Santacesaria E, Di Serio M, Tesser R, Turco R, Tortorelli M, Russo V, Chem. Eng. Process., 52, 47 (2012)
  25. Aghel B, Rahimi M, Sepahvand A, Alitabar M, Ghasempour HR, Energy Conv. Manag., 84, 541 (2014)
  26. Santana HS, Tortola DS, Silva JL, Taranto OP, Energy Conv. Manag., DOI:10.1016/j.enconman.2016.03.089. (2016)
  27. Alenezi R, Santos RCD, Raymahasay S, Leeke GA, Renew. Energy, 53, 242 (2013)
  28. Shin HY, Lim SM, Kang SC, Bae SY, Fuel Process. Technol., 98, 1 (2012)
  29. Han X, Yan W, Hung CT, He Y, Wu PH, Liu LL, Huang SJ, Liu SB, Korean J. Chem. Eng., 33(7), 2063 (2016)
  30. Bynes AN, Eide I, Jorgensen KB, Fuel, 137, 94 (2014)
  31. Sendzikiene E, Sinkuniene D, Kazanceva I, Kazancev K, Renew. Energy, 87, 266 (2016)
  32. Mostafaei M, Ghobadian B, Barzegar M, Banakar A, Ultrason. Sonochem., 27, 54 (2015)
  33. Roschat W, Siritanon T, Kaewpuang T, Yoosuk B, Promarak V, Bioresour. Technol., 209, 343 (2016)
  34. Encinar JM, Pardal A, Sanchez N, Fuel, 166, 51 (2016)
  35. Khang DS, Razon LF, Madrazo CF, Tan RR, Chem. Eng. Res. Des., 92(8), 1512 (2014)
  36. Ngamcharussrivichai C, Wiwatnimit W, Wangnoi S, J. Mol. Catal. A-Chem., 276(1-2), 24 (2007)
  37. Wang Y, Ou SY, Liu PZ, Xue F, Tang SZ, J. Mol. Catal. A-Chem., 252(1-2), 107 (2006)
  38. Somnuk K, Niseng S, Prateepchaikul G, Energy Conv. Manag., 80, 374 (2014)
  39. Patil PD, Deng SG, Fuel, 88(7), 1302 (2009)
  40. Rashid U, Anwar F, Ashraf M, Saleem M, Yusup S, Energy Conv. Manag., 52(8-9), 3034 (2011)
  41. Salvi B, Panwar N, Renew. Sust. Energ. Rev., 16, 3680 (2012)
  42. Kafuku G, Mbarawa M, Fuel, 89(9), 2556 (2010)
  43. Noshadi I, Amin NAS, Parnas RS, Fuel, 94(1), 156 (2012)
  44. Montgomery DC, Design and Analysis of Experiments, Wiley, New York (2001).
  45. Yang ZQ, Xie WL, Fuel Process. Technol., 88(6), 631 (2007)
  46. Omar WNNW, Amin NAS, Biomass Bioenerg., 35(3), 1329 (2011)
  47. Haaland PD, Experimental design in biotechnology, Marcel Dekker Inc., New York (1989).
  48. Tang Z, Wang L, Yang J, Eur. J. Lipid Sci. Technol., 110, 747 (2008)