Polymer(Korea), Vol.41, No.4, 709-718, July, 2017
막 결합형 축전식 탈염공정을 이용한 수용액 중 방사성 이온의 제거 연구
Studies on the Removal of Radioactive Ions in Water Using Membrane Capacitive Deionization Process
E-mail:
초록
본 연구에서는 이온교환막의 소재로서 술폰기가 함유된 폴리이서이서케톤(SPEEK)과 아민기가 함유된 폴리 설폰(APSf)을 합성하였다. 합성한 이온교환고분자는 탄소전극에 코팅하여 복합 탄소전극을 제조하였으며 방사성 이온이 포함된 CsNO3과 Sr(NO3)2 수용액에 대하여 축전식 탈염 기술에서의 적용성을 평가하고자 하였다. 운전조건으로는 흡착 시간 및 전압, 탈착 전압, 공급액의 농도 및 유속에 대하여 제염 효율을 평가하였다. 15 mL/min의 유속에서 1가 이온이 포함된 CsNO3 20 mg/L을 공급액으로 하며 1.5 V로 3분간 흡착시키고, -0.1 V로 1분 탈착시켰을 때 98.5%의 제염 효율을 보였다. 동일한 조건에서 2가 이온이 포함된 Sr(NO3)2 20 mg/L 공급액의 경우 94%의 제염 효율을 나타내었다.
In this study, sulfonated poly(ether ether ketone) and aminated polysulfone as ion exchange materials were synthesized. The composite carbon electrodes coated with ion exchange polymers onto carbon electrodes were prepared and then the applicability of the membrane capacitive deionization (MCDI) was evaluated for the solution containing CsNO3 and Sr(NO3)2 of radioactive ions in water. The absorption time and voltages, desorption time and voltages, feed concentration and flow rate as the operating conditions were investigated in terms of the decontamination efficiency. The decontamination efficiency, 98.5%, was obtained for the feed concentration, CsNO3 20 mg/L containing monovalent ion at 1.5 V and 3 min for adsorption voltage and time, and -0.1 V and 1 min for desorption voltage and time. At the same operating conditions, the decontamination efficiency, 94.8%, was achieved for Sr(NO3)2 20 mg/L solution as the bivalent ion.
Keywords:membrane capacitive deionization (MCDI);radioactive ion;decontamination efficiency;cesium;strontium
- Kornilovich BY, Pshinko GN, Spasenova LN, Radiochemistry, 42, 92 (2000)
- Mothersill C, Seymour C, J. Environ. Radioact., 133, 5 (2014)
- Panov AV, Alexakhin RM, Prudnikov PV, Novikov AA, Muzalevskaya AA, Eurasian Soil Sci., 42, 445 (2009)
- Endo S, Kimura S, Takatsuji T, Nanasawa K, Imanaka T, Shizuma K, J. Environ. Radioact., 111, 18 (2012)
- Yamaguchi N, Eguchi S, Fujiwara H, Hayashi K, Tsukada H, Sci. Total Environ., 425, 128 (2012)
- Katsumi H, J. Environ. Radioact., 111, 13 (2012)
- Wang J, Wan Z, Prog. Nucl. Energy, 78, 47 (2015)
- Shin DH, Rhim JW, Park SK, Seo CH, Park HH, Membr. J., 25, 478 (2015)
- Oren Y, Desalination, 228(1-3), 10 (2008)
- Kim JS, Jeong JH, Rhim JW, J. Membr. Sci., 25, 60 (2015)
- Welgemoed TJ, Schutte CF, Desalination, 183, 1 (2005)
- Kim YJ, Choi JH, Appl. Chem. Eng., 21(1), 87 (2010)
- Cho GS, Master’s degree, Seoul University (2014).
- Bard AJ, Larry R. Faulkner, Electrochemical methods, John Wiley & Sons, United States, 1980.
- Crow DR, Principles and Applications of Electrochemistry, Chapman & Hall, Lodon, 1994.
- Choi JH, Kang HS, Appl. Chem. Eng., 27(1), 74 (2016)
- Biesheuvel PM, van der Wal A, J. Membr. Sci., 346(2), 256 (2010)
- Choi JH, Lee JB, J. Membr. Sci., 26, 229 (2016)
- Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM, Prog. Mater. Sci., 58(8), 1388 (2013)
- Kim KY, Rhim JW, J. Membr. Sci., 26, 62 (2016)
- Becker CM, Biagini AB, Forte MMC, Amigo SC, Varagas JC, Azambuja DS, Polimeros, 22, 395 (2012)
- Kim YJ, Choi JH, Sep. Purif. Technol., 71(1), 70 (2010)