화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.52, 270-276, August, 2017
Electrogeneration of H2O2 using graphite cathode modified with electrochemically synthesized polypyrrole/MWCNT nanocomposite for electro-Fenton process
E-mail:
The aim of this paper is to perform the electrosynthesis of polypyrrole/multi-walled carbon nanotube (MWCNT) nanocomposites with different concentration of MWCNT on graphite cathode for the electrogeneration of H2O2 by reducing dissolved oxygen. The results show that cathode modified with nanocomposite with 2.5% w/w MWCNT (GPM-2.5) had highest electrocatalytic activity. In addition, a maximum concentration of H2O2, up to 5.6 mg L-1, is achieved under the conditions of -0.55 V (vs. SCE) and pH = 3 after 10 min electrolysis. Furthermore, it is demonstrated that the GPM-2.5 cathode has a high efficiency in decolorization of basic blue 41 by electro-Fenton process.
  1. Salem MA, Al-Ghonemiy AF, Zaki AB, Appl. Catal. B: Environ., 91(1-2), 59 (2009)
  2. Haque MM, Smith WT, Wong DKY, J. Hazard. Mater., 283, 164 (2015)
  3. Zhang GQ, Yang FL, Gao MM, Fang XH, Liu LF, Electrochim. Acta, 53(16), 5155 (2008)
  4. Asghar A, Raman AAA, Daud WMAW, J. Clean Prod., 87, 826 (2015)
  5. Parsa JB, Golmirzaei M, Abbasi M, J. Ind. Eng. Chem., 20(2), 689 (2014)
  6. Miao J, Chen Y, Yang XJ, Liu Y, Zhao S, Yang Y, Yang C, Wan P, Desalin. Water Treat., 56, 1447 (2014)
  7. Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT, Environ. Int., 75, 33 (2015)
  8. Yang J, Wang D, Han H, Li C, Accounts, Accounts Chem. Res., 46, 1900 (2013)
  9. Sires I, Brillas E, Oturan MA, Rodrigo MA, Panizza M, Environ. Sci. Pollut. Res., 21, 8336 (2014)
  10. Babuponnusami A, Muthukumar K, J. Environ. Chem. Eng., 2, 557 (2014)
  11. Antonin VS, Assumpcao MHMT, Silva JCM, Parreira LS, Lanza MRV, Santos MC, Electrochim. Acta, 109, 245 (2013)
  12. Zhou L, Hu ZX, Zhang C, Bi ZH, Jin T, Zhou MH, Sep. Purif. Technol., 111, 131 (2013)
  13. Pandiyan R, Delegan N, Dirany A, Drogui P, Khakani MAE, Carbon, 94, 988 (2015)
  14. Le TXH, Bechelany M, Lacour S, Oturan N, Oturan MA, Cretin M, Carbon, 94, 1003 (2015)
  15. Nidheesh PV, Gandhimathi R, Desalination, 299, 1 (2012)
  16. Brillas E, Martinez-Huitle CA, Appl. Catal. B: Environ., 166-167, 603 (2015)
  17. Scialdone O, Galia A, Gattuso C, Sabatino S, Schiavo B, Electrochim. Acta, 182, 775 (2015)
  18. Zhang G, Zhao S, Yang F, Liu L, Electroanalysis, 21, 2420 (2009)
  19. dos Reis FVE, Antonin VS, Hammer P, Santos MC, Camargo PHC, J. Catal., 326, 100 (2015)
  20. Xia GS, Lu YH, Xu HB, Electrochim. Acta, 158, 390 (2015)
  21. Yuan Y, Zhou SG, Zhuang L, J. Power Sources, 195(11), 3490 (2010)
  22. Porras-Gutierrez AG, Frontana-Uribe BA, Gutierrez-Granados S, Griveau S, Bedioui F, Electrochim. Acta, 89, 840 (2013)
  23. Zhang HJ, Li HL, Li XT, Zhao B, Yang JH, Int. J. Hydrog. Energy, 39(30), 16964 (2014)
  24. Zhang HJ, Li H, Deng C, Zhao B, Yang J, ECS Electrochem. Lett., 4, H33 (2015)
  25. Eisenberg G, Ind. Eng. Chem., 15, 327 (1943)
  26. Han G, Liu Y, Kan E, Tang J, Zhang L, Wang H, Tang W, RSC Adv., 4, 9898 (2014)
  27. Chakraborty G, Gupta K, Meikap A, Babu R, Blau W, Solid State Commun., 152, 13 (2012)
  28. Vukovic GD, Marinkovic AD, Skapin SD, Ristic MD, Aleksic R, Peric-Grujic AA, Uskokovic PS, Chem. Eng. J., 1743, 855 (2011)
  29. Tehrani MS, Azar PA, Namin PE, Dehaghi SM, J. Environ. Protect., 04, 529 (2013)
  30. Bachhav SG, Patil DR, Am. J. Mater. Sci., 5, 90 (2015)
  31. Maniwa Y, Fujiwara R, Kira H, Tou H, Nishibori E, Takata M, Sakata M, Fujiwara A, Zhao X, Iijima S, Ando Y, Phys. Rev. B, 64, 073105 (2001)
  32. Cheah K, Forsyth M, Truong VT, Synth. Met., 101, 19 (1999)
  33. Ouyang JY, Li YF, Polymer, 38(15), 3997 (1997)
  34. Yang LF, Shi Z, Yang WH, Electrochim. Acta, 153, 76 (2015)
  35. Peralta E, Natividad R, Roa G, Marin R, Romero R, Pavon T, Sustain. Environ. Res., 23, 259 (2013)
  36. Yu FK, Zhou MH, Yu XM, Electrochim. Acta, 163, 182 (2015)