Korean Journal of Chemical Engineering, Vol.34, No.9, 2451-2458, September, 2017
Kinetic and thermodynamic characteristics of crystallization of vancomycin
E-mail:
We investigated the effect of the major process parameters (crystallization temperature and time) on the efficiency of the vancomycin crystallization process and conducted a kinetic and thermodynamic analysis. The most clear and uniform vancomycin crystals with the highest yield (~98%) were obtained at the optimum crystallization temperature (283 K) and time (1,440 min). The electron microscope, SEM, and XRD analyses showed that intact crystalline vancomycin was obtained when using a crystallization temperature of 283, 288, and 293 K. The kinetic analysis results revealed that the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model was suitable with a high value for r2 (>0.9561) and low value for RMSD (<0.0170). Finally, from the thermodynamic analysis the Gibb’s free energy change (ΔG0), entropy change (ΔS0), and enthalpy change (ΔH0) were all negative, indicating that the crystallization process was spontaneous, irreversible, and exothermic.
- Yan H, Qi D, Cheng X, Song Z, Li W, He B, J. Antibiot., 51, 750 (1998)
- Griffith RS, J. Antimicrob. Chemoter., 14, 1 (1984)
- Kim SI, Han CY, Jung HS, Lee JS, Ok SY, Kim SC, Korean J. Anesthesiol., 51, 727 (2006)
- United States Pharmacopoeia (USP 29): Vancomycin hydrochloride, United State Pharmacopeial Convention, Inc. (2006).
- Javadzadeh Y, Mohammadi A, Khoei N, Nokhodchi A, Acta Pharm., 59, 187 (2009)
- Kim WS, Lee EK, Korean J. Biotechnol. Bioeng., 20, 164 (2005)
- Lee JY, Lee KH, Chae HJ, Kim JH, Korean J. Chem. Eng., 27(5), 1538 (2010)
- Kim YN, Lee JY, Kim JH, Process Biochem., 46(10), 2068 (2011)
- Kwak EA, Kim SJ, Kim JH, Korean J. Chem. Eng., 29(11), 1487 (2012)
- Kim SK, Kim JH, Korean J. Microbiol. Biotechnol., 42, 232 (2014)
- Kim SJ, Kim JH, Korean J. Microbiol. Biotechnol., 42, 297 (2014)
- Ha GS, Kim JH, Korean J. Chem. Eng., 32(4), 576 (2015)
- Kim SJ, Kim JH, Korean J. Chem. Eng., 32(3), 465 (2015)
- Vasanthakumari R, Polymer, 22, 862 (1981)
- Weiping Y, Rene LG, Guy S, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 332, 41 (2002)
- Chandan B, Michael JP, J. Pharm. Sci., 97, 1329 (2008)
- Lee JW, Jung YT, Suh JW, Lee KS, US Patent, 7,018,814 (2006).
- Kitanovic S, Milenovic D, Velijkovic VB, Biochem. Eng. J., 41, 1 (2008)
- Cheung YC, Wu JY, Biochem. Eng. J., 79, 214 (2013)
- Kalu PN, Waryoba DR, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 464, 68 (2007)
- Kohout J, J. Mater. Sci., 43(4), 1334 (2008)
- Lee HJ, Ni H, Wu DT, Ramirez AG, Appl. Phys. Lett., 87, 124102 (2005)
- McHenry ME, Johnson F, Okumura H, Ohkubo T, Ramanan VRV, Laughlin DE, Scr. Mater., 48, 881 (2003)
- Choi HW, Kim YH, Rim YH, Yang YS, Phys. Chem. Chem. Phys., 15, 9940 (2013)
- Kostic MD, Jokovic NM, Stamenkovic OS, Rajkovic KM, Milic PS, Veljkovic VB, Ind. Crop. Prod., 52, 679 (2014)
- Paunovic DD, Mitic SS, Kostic DA, Mitic MN, Stojanovic BT, Pavlovic JL, Adv. Technol., 3, 58 (2014)
- Jokic S, Velic D, Bilic M, Bucic-Kojic A, Planinc M, Tomas S, Czech J. Food Sci., 28, 206 (2010)
- Bucic-Kojic A, Planinic M, Tomas S, Bilic M, Velic D, J. Food Eng., 81(1), 236 (2007)
- Kim JH, Kim KY, Kim D, Park HS, Lee SC, Lee SI, J. Korean Soc. Environ. Eng., 30, 207 (2008)
- Kim KJ, Prospect. Ind. Chem., 4(4), 1 (2001)
- Dalvi SV, Dave RN, Ind. Eng. Chem. Res., 48(16), 7581 (2009)
- Rodriguez CVR, Sanchez EM, Hernandez JG, Prokhorov E, Saldana JM, Martinez GT, J. Surf. Eng. Mater. Adv. Technol., 2, 44 (2012)
- Saha P, Chowdhury S, Insight into adsorption thermodynamics, Thermodynamics Prof. Mizutani Tadashi (Ed.), ISBN: 978- 953-307-544-0, InTech, Available from: http://www.intechopen. com/books/thermodynamics/insight-into-adsorption-thermodynamics (2011).
- Levenspiel O, Chemical Reaction Engineering, Wiley, New York, 22 (1999).
- Farzadi A, Materialwiss. Werkst., 46, 1218 (2015)
- Park JN, Kim JH, Process Biochem., 53, 224 (2017)
- Lee CG, Kim JH, Process Biochem., In Press (2017).