화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.5, 565-570, October, 2017
시판용 TiO2 광촉매의 doping 성분에 따른 비주류 담배연기의 유해물질 제거효율
Removal Efficiency of Harmful Substances in Side-stream Tobacco Smoke by the Doping Components of Commercial TiO2 Photocatalysts
E-mail:
초록
흡연으로 발생되는 담배연기는 주류 연기와 비주류 연기로 구분된다. 담배연기 중 실내로 확산되는 연기의 대부분은 비주류 연기이며, 비주류 연기의 유해물질 농도는 주류 연기의 농도보다 2~3배 높다. 본 연구에서는 TiO2 광촉매의 doping 성분에 따른 비주류 담배연기 내의 CO, H2S, NH3, HCHO의 제거 효율을 확인하고자 하였다. 실험 결과, CO가 최대 78.37% 제거되었으며, TiO2 광촉매 공정이 CO 제거에 효과적인 것으로 확인되었다. 또한 CO, H2S, HCHO의 제거에 있어서 TiO2 광촉매에 doping된 O, Si 성분에 의해 영향을 크게 받는다. 결론적으로, doping된 O, Si 성분이 많을수록 유해물질 제거효율이 높다.
Tobacco smoke emitted during smoking is divided into a main-stream and side-stream smoke. Most of the tobacco smoke that spreads to a room while smoking is a side-stream one. The side-stream tobacco smoke is two to three times more harmful than that of the main-stream tobacco smoke. In this study, the removal efficiency of CO, H2S, NH3 and HCHO in a side-stream tobacco smoke using the doping component of TiO2 photocatalysts was confirmed. As a result, CO was removed up to 78.37%, which indicated that the TiO2 photocatalytic process is effective for CO removal. Also, the removal efficiencies of CO, H2S and HCHO were greatly affected by the amount of doped O and Si components of the TiO2 photocatalyst. In conclusion, the more doped O and Si components had, the higher removal efficiencies of harmful substances were achieved.
  1. Ministry of Health & Welfare, 2015 National Health Statistics I, p.70-75, Disease Control Center, Korea (2016).
  2. Ministry of Strategy and Finance, Tobacco Market Trend in the First Half of 2017, Korea (2017).
  3. Shin HJ, J. Korean Soc. Tob. Sci., 32(1), 41 (2010)
  4. Jeon TY, Kim JY, Appl. Chem. Eng., 26(2), 229 (2015)
  5. Yang SI, PhD Dissertation, Ulsan University, Ulsan, Korea (2015).
  6. Lim JM, Lee JH, J. Korean Soc. Envion. Eng., 36(5), 317 (2014)
  7. Slezakova K, Pereira MC, Alvim-Ferraz MC, Atmos. Environ., 43(3), 486 (2009)
  8. US Environmental Protection Agency, EPA/600/6-90/006F, Office of Research and Development, Office of Air and Radiation, USA (1992).
  9. World Health Organization, WHO/SDE/ PHE/OEH, Geneva, Switzerland (2006).
  10. Adams JD, O’Mara-Adams KJ, Hoffmann D, Carcinogenesis, 8(5), 729 (1987)
  11. Park GH, J. Korean Soc. Tob. Sci., 12(2), 103 (1990)
  12. Kim JH, Yoon GH, Mark L, Lee JJ, Park JS, Ahn JY, Han JS, Kim SD, J. Korean Soc. Urban Environ., 13(2), 117 (2013)
  13. Tang X, Zheng Z, Jung HS, Asa-Awuku A, Aerosol Sci. Technol., 46(7), 760 (2012)
  14. Koo BC, Jeon JS, J. Korean Soc. Biomed. Lab. Sci., 6(2), 109 (2000)
  15. Lee KW, Kim HK, Oh YA, Korean Public Health Res., 42(3), 29 (2016)
  16. Kim TY, Cho YT, Kim JY, Appl. Chem. Eng., 27(4), 433 (2016)
  17. Choi W, J. Korean Ind. Eng. Chem., 14(8), 1011 (2003)
  18. Wold A, Chem. Mater., 5(3), 280 (1993)
  19. Fujishima A, Rao TN, Tryk DA, J. Photochem. Photobiol. C, 1(1), 1 (2000)
  20. Kim SH, Lee SW, Kim JJ, Kim SO, J. Miner. Soc. Korea, 28(3), 245 (2015)
  21. Jeon TY, Kim JY, J. Korean Soc. Environ. Eng., 36(8), 528 (2014)
  22. Park JH, MS Thesis, Kyonggi Univercity, Suwon, Korea (2010).