화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.11, 2916-2921, November, 2017
Highly sensitive glucose biosensor using new glucose oxidase based biocatalyst
E-mail:,
Glucose, which is a primary energy source of living organisms, can induce diabetes or hypoglycemia if its concentration in blood is irregular. It is therefore important to develop glucose biosensor that reads the concentration of glucose in blood precisely. In the present work, we suggest new glucose oxidase (GOx) based catalysts that can improve the sensitivity of the glucose biosensor and make glucose measurements over a wide concentration ranges possible. For synthesizing such catalysts, a composite including pyrenecarboxaldehyde (PCA) and GOx is attached to substrate including carbon nanotube (CNT) and polyethyleneimine (PEI) (CNT/PEI/[PCA/GOx]). Catalytic activity and stability of the catalyst are then evaluated. According to the investigation, the catalyst shows excellent glucose sensitivity of 47.83 μAcm-2mM-1, low Michaelis-Menten constant of 2.2mM, and wide glucose concentration detection, while it has good glucose selectivity against inhibitors, such as uric acid and ascorbic acid. Also, its activity is maintained to 95.7% of its initial value even after four weeks, confirming the catalyst is stable enough. The excellence of the catalyst is attributed to hydrophobic interaction, C=N bonds, and π-hydrogen interaction among GOx, PCA and PEI/ CNT. The bindings play a role in facilitating electron transport between GOx and electrode.
  1. Wang J, Chem. Rev., 108(2), 814 (2008)
  2. Chung Y, Kwon Y, Korean Chem. Eng. Res., 53(6), 802 (2015)
  3. World Health Organization (WHO) of United Nations (UN). Global Report on Diabetes sheet. Available online: http://www.who.int/diabetes/global-report/WHD16-press-release-EN_3.pdf (Accessed on May 09, 2016).
  4. Clark LC, Lyons C, Ann NY, Acad. Sci., 102, 29 (1962)
  5. Cosnier S, Biosens. Bioelectron., 14, 443 (1999)
  6. Minteer SD, Liaw BY, Cooney MJ, Curr. Opin. Biotechnol., 18, 228 (2007)
  7. Kim J, Jia H, Wang PC, Biotechnol. Adv., 24, 296 (2006)
  8. Zhou C, Xu L, Song J, Xing R, Xu S, Liu D, Song H, Sci. Rep., 4, 7382 (2014)
  9. Zhu H, Li L, Zhou L, Shao Z, Chen X, J. Mater. Chem., 4, 7333 (2016)
  10. Christwardana M, Kwon Y, J. Power Sources, 299, 604 (2015)
  11. Barton SC, Gallaway J, Atanassov P, Chem. Rev., 104(10), 4867 (2004)
  12. Yu EH, Krewer U, Scott K, Energy, 3, 1499 (2010)
  13. Choi HS, Kim DS, Thapa LP, Lee SJ, Kim SB, Cho J, Park C, Kim SW, Korean J. Chem. Eng., 33(12), 3434 (2016)
  14. Bohara RA, Thorat ND, Pawar SH, Korean J. Chem. Eng., 33(1), 216 (2016)
  15. Inamuddin, Beenish, Naushad M, Korean J. Chem. Eng., 33(1), 120 (2016)
  16. Jo BH, Kim CS, Jo YK, Cheong H, Cha HJ, Korean J. Chem. Eng., 33(4), 1125 (2016)
  17. Christwardana M, Chung Y, Kwon Y, NPG Asia Mater., 9, e386 (2017)
  18. Chung Y, Ahn Y, Kim DH, Kwon Y, J. Power Sources, 337, 152 (2017)
  19. Christwardana M, Chung Y, Kwon Y, Nanoscale., 9, 1993 (2017)
  20. Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources, 286, 197 (2015)
  21. Wooten M, Karra S, Zhang M, Gorski W, Anal. Chem., 86, 752 (2014)
  22. Cui JD, Liu RL, Li LB, Korean J. Chem. Eng., 33(2), 610 (2016)
  23. Hyun K, Han SW, Koh WG, Kwon Y, Int. J. Hydrog. Energy, 40(5), 2199 (2015)
  24. Christwardana M, Kim KJ, Kwon Y, Sci. Rep., 6, 3012 (2016)
  25. Yoo EH, Lee SY, Sensors, 10, 4558 (2010)
  26. Uang YM, Chou TC, Biosens. Bioelectron., 19, 141 (2003)
  27. Liu Y, Wang M, Zhao F, Xu Z, Dong S, Biosens. Bioelectron., 21, 984 (2005)
  28. Kong T, Chen Y, Ye Y, Zhang K, Wang Z, Wang X, Sens. Actuators B-Chem., 138, 344 (2009)
  29. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y, Biosens. Bioelectron., 25, 901 (2009)
  30. Liu G, Lin Y, Electrochem. Commun., 8, 251 (2006)
  31. Wu BY, Hou SH, Yin F, Li J, Zhao ZX, Huang JD, Chen Q, Biosens. Bioelectron., 22, 838 (2007)
  32. Unnikrishnan B, Palanisamy S, Chen SM, Biosens. Bioelectron., 39, 70 (2013)