화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.57, 104-112, January, 2018
Tunable electrorheological performance of silicone oil suspensions based on controllably reduced graphene oxide by surface initiated atom transfer radical polymerization of poly(glycidyl methacrylate)
E-mail:,
This article is focused on the controllable reduction of the graphene oxide (GO) particles as a simultaneous process during surface initiated atom transfer radical polymerization (SI-ATRP) providing hybrid particles with tailored conductivity and substantial polymer shell on the particles tunable by SIATRP conditions. The main advantage of such approach is that both the compatibility improvement, due to the polymer layer, and conductivity tuning, due to partial GO reduction, were simply achieved in single-step reaction providing electrorheological (ER) system with enhanced performance in comparison to either neat GO or similar non-covalently bonded GO-polymer hybrids. The presence of the poly (glycidyl methacrylate) (PGMA) on the surface of GO was investigated using FTIR spectrometry, transmission electron microscopy and thermogravimetric analysis and their chain length (Mw) and polydispersity index (PDI) were determined by 1H NMR and GPC, respectively. Two different GO-PGMA particle systems varied in Mw and PDI and also in electrical conductivities were prepared and their electro-responsive capabilities were investigated. The reduction of GO particles was confirmed by Raman shift as well as conductivity measurements. Electrorheological (ER) performance was investigated at various electric field strengths and repeatability of the phenomenon was confirmed by 10 on/off field cycles. Finally, with the help of dielectric measurements of GO-PGMA based ER suspensions, fitted by Havriliak.Negami model, the relaxation processes were properly investigated and the results were correlated with those obtained from electrorheological measurements.
  1. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH, Prog. Mater. Sci., 57(7), 1061 (2012)
  2. Lonkar SP, Deshmukh YS, Abdala AA, Nano Res., 8(4), 1039 (2015)
  3. Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN, Appl. Phys. Lett., 92(15), 3 (2008)
  4. Qi XY, Tan CL, Wei J, Zhang H, Nanoscale, 5(4), 1440 (2013)
  5. Mianehrow H, Moghadam MHM, Sharif F, Mazinani S, Int. J. Pharm., 484(1-2), 276 (2015)
  6. Wang Y, Li ZH, Wang J, Li JH, Lin YH, Trends Biotechnol., 29(5), 205 (2011)
  7. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS, Nano Lett., 8(10), 3498 (2008)
  8. Yang SB, Wu XL, Chen CL, Dong HL, Hu WP, Wang XK, Chem. Commun., 48(22), 2773 (2012)
  9. Xu H, Yan B, Zhang K, Wang J, Li SM, Wang CQ, Du YK, Yang P, Jiang SJ, Song SQ, Appl. Surf. Sci., Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Shiraishi Y, Du Y, Yang P, Electrochim. Acta 245 (2017) 227; Zhang K, Shi Y, Li S, Wang C, Yan B, Xu H, Wang J, Guo J, Du Y, CemElectroChem (2017), doi:http://dx.doi.org/10.1002/celc.201700295., 416, 191 (2017)
  10. Zou CE, Yang BB, Bin D, Wang J, Li SM, Yang P, Wang CQ, Shiraishi Y, Du YK, J. Colloid Interface Sci., 488, 135 (2017)
  11. Li J, Zhang SW, Chen CL, Zhao GX, Yang X, Li JX, Wang XK, ACS Appl. Mater Interfaces, Yang SB, Hu J, Chen CL, Shao DD, Wang XK, Environ. Sci. Technol. 45 (8) (2011) 3621; Wu XL, Xiao PY, Zhong SX, Fang KM, Lin HJ, Chen JR, RSC Adv. 7 (45) (2017) 28145. (2017) 28145., 4(9), 4991 (2012)
  12. Hu HT, Wang XB, Wang JC, Liu FM, Zhang M, Xu CH, Appl. Surf. Sci., Yin JB, Chang RT, Shui YJ, Zhao XP, Soft Matter 9 (31) (2013) 7468., 257(7), 2637 (2011)
  13. Hao T, J. Colloid Interface Sci., Hao T, Kawai A, Ikazaki F, Langmuir 14 (5) (1998) 1256., 206(1), 240 (1998)
  14. Hao T, Adv. Colloid Interface Sci., 97(1-3), 1 (2002)
  15. Liu YD, Park BJ, Kim YH, Choi HJ, J. Mater. Chem., Xia XA, Yin JB, Qiang PF, Zhao XP, Polymer 52 (3) (2011) 786; Kim SG, Kim JW, Choi HJ, Suh MS, Shin MJ, Jhon MS, Colloid Polym. Sci. 278 (9) (2000) 894., 21(43), 17396 (2011)
  16. Plachy T, Sedlacik M, Pavlinek V, Stejskal J, J. Mater. Chem., Mrlik M, Sedlacik M, Pavlinek V, Bober P, Trchova M, Stejskal J, Saha P, Colloid Polym. Sci. 291 (9) (2013) 2079., 3(38), 9973 (2015)
  17. Yin JB, Wang XX, Chang RT, Zhao XP, Soft Matter, 8(2), 294 (2012)
  18. Zhang WL, Choi HJ, J. Intell. Mater. Syst. Struct., Li LD, Yin JB, Liu Y, Zhao XP, J. Mater. Chem. C 3 (19) (2015) 5098-5108., 26(14), 1826 (2015)
  19. Zhang WL, Choi HJ, Leong YK, Mater. Chem. Phys., Zhang WL, Liu YD, Choi HJ, Mater. Res. Bull. 48 (12) (2013) 4997; Dong YZ, Liu Y, Yin JB, Zhao XP, J. Mater. Chem. C 2 (48) (2014) 10386., 145(1-2), 151 (2014)
  20. Lee S, Yoon CM, Hong JY, Jang J, J. Mater. Chem., 2(30), 6010 (2014)
  21. Yin JB, Shui YJ, Chang RT, Zhao XP, Carbon, 50(14), 5247 (2012)
  22. Zhang WL, Choi HJ, Langmuir, 28(17), 7055 (2012)
  23. Zhang WL, Choi HJ, Seo Y, Macromol. Chem. Phys., 214(13), 1415 (2013)
  24. Wajid AS, Das S, Irin F, Ahmed HST, Shelburne JL, Parviz D, Fullerton RJ, Jankowski AF, Hedden RC, Green MJ, Carbon, 50(2), 526 (2012)
  25. Cvek M, Mrlik M, Ilcikova M, Plachy T, Sedlacik M, Mosnacek J, Pavlinek V, J. Mater. Chem., 3(18), 4646 (2015)
  26. Mrlik M, Ilcikova M, Plachy T, Pavlinek V, Spitalsky Z, Mosnacek J, Chem. Eng. J., 283, 717 (2016)
  27. Ejaz M, Puli VS, Elupula R, Adireddy S, Riggs BC, Chrisey DB, Grayson SM, J. Polym. Sci. A: Polym. Chem., 53(6), 719 (2015)
  28. Shin KY, Lee S, Hong S, Jang J, ACS Appl. Mater Interfaces, 6(8), 5531 (2014)
  29. Brodie BC, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 149, 249 (1859)
  30. Ilcikova M, Mrlik M, Spitalsky Z, Micusik M, Csomorova K, Sasinkova V, Kleinova A, Mosnacek J, RSC Adv., 5(5), 3370 (2015)
  31. Cho MS, Choi HJ, Jhon MS, Polymer, 46(25), 11484 (2005)
  32. Havriliak S, Negami S, Polymer, 8(4), 161 (1967)
  33. Shipp DA, Wang JL, Matyjaszewski K, Macromolecules, 31(23), 8005 (1998)
  34. Mosnacek J, Matyjaszewski K, Macromolecules, 41(15), 5509 (2008)
  35. Ahmad S, Zulfiqar S, Polym. Degrad. Stabil., 76(2), 173 (2002)
  36. Cvek M, Mrlik M, Ilcikova M, Mosnacek J, Munster L, Pavlinek V, Macromolecules, 50(5), 2189 (2017)
  37. Zhang WL, Liu YD, Choi HJ, Kim SG, ACS Appl. Mater Interfaces, 4(4), 2267 (2012)
  38. Parthasarathy M, Klingenberg DJ, Mater. Sci. Eng. R-Rep., 17(2), 57 (1996)
  39. Lee S, Kim YK, Hong JY, Jang J, ACS Appl. Mater Interfaces, 8(36), 24221 (2016)
  40. Lengalova A, Pavlinek V, Saha P, Stejskal J, Kitano T, Quadrat O, Physica A, 321(3-4), 411 (2003)
  41. Mrlik M, Pavlinek V, Cheng QL, Saha P, Int. J. Mod. Phys. B, 26(2), 8 (2012)