화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.55, No.6, 731-744, December, 2017
삼중항-삼중항 소멸에 의한 광에너지 상향전환 기술의 원리와 최신 연구현황
Principle and Research Trends of Triplet-triplet Annihilation Upconversion
E-mail:
초록
삼중항-삼중항 소멸에 의한 광에너지 상향전환 기술(Triplet-triplet annihilation upconversion, TTA-UC)은 특정 에너지 조건을 만족시키는 유기물들의 조합에 의해 낮은 에너지의 광자를 높은 에너지의 광자로 변환시키는 특수한 광화학적 공정이다. TTA-UC는 태양광 스펙트럼 중 낮은 에너지 탓에 활용되지 못하고 소실되는 광자를 고 에너지의 광자로 변환시킴으로써 태양광에 기반한 광학기기들의 광에너지 전환효율을 획기적으로 향상시킬 수 있는 기술로 평가받고 있다. 본 논문은 아직 국내학계에 생소한 연구분야인 TTA-UC현상의 광화학적 원리와 특징을 소개하고, TTA-UC와 관 련한 최신 연구동향과 응용분야, 그리고 향후 연구방향을 고찰하였다.
Triplet-triplet annihilation upconversion (TTA-UC) is a special photochemical process that converts low energy photons to higher energy photon via combination of organic chemicals which fulfill specific energetic criteria. TTA-UC has been known as attractive technology that is able to enhance energy conversion efficiency of the photonic devices based on sunlight, which is achieved by conversion of wasted low energy photons in solar spectrum into higher energy photon. In the present paper, we introduced the photochemical mechanism and characteristics of TTA-UC phenomenon, which is yet unfamiliar to the domestic academia, and investigated recent research status, application, and future research directions of TTA-UC technology.
  1. Cates EL, Chinnapongse SL, Kim JH, Kim JH, Environ. Sci. Technol., 46(22), 12316 (2012)
  2. Wang F, Liu XG, J. Am. Chem. Soc., 130(17), 5642 (2008)
  3. Kim DH, Ryu JH, Chung JH, Eun JW, Shim KB, Cho SY, Korean J. Chem. Eng., 29(4), 519 (2012)
  4. Jung KY, Kim WH, Korean Chem. Eng. Res., 53(5), 620 (2015)
  5. Parker CA, Hatchard CG, Proc. Chem. Soc. London., 386-387(1962).
  6. Parker CA, Hatchard CG, J. Mol. Spectrosc., 311-319(1964).
  7. McCusker CE, Castellano FN, Top. Curr. Chem., 374, 19 (2016)
  8. Cheng YY, Raphael TK, Clady GCR, Tayebjee MJY, Ekins-Daukes NJ, Crossley MJ, Schmidt TW, Phys. Chem. Chem. Phys., 12, 66 (2010)
  9. Cheng YY, Fuckel B, Khoury T, Clady RGCR, Tayebjee MJY, Ekins-Daukes NJ, Crossley MJ, Schmidt TW, J. Phys. Chem. Lett., 1, 1795 (2010)
  10. Kim JH, Deng F, Castellano FN, Kim JH, ACS Photonics, 1(4), 382 (2014)
  11. Haefele A, Blumhoff J, Khnayzer RS, Castellano FN, J. Phys. Chem. Lett., 3, 299 (2012)
  12. Islangulov RR, Kozlov DV, Castellano FN, Chem. Commun., 30, 3776 (2005)
  13. Singh-Rachford TN, Castellano FN, Inorg. Chem., 48(6), 2541 (2009)
  14. Singh-Rachford TN, Castellano FN, J. Phys. Chem. Lett., 1, 195 (2010)
  15. Singh-Rachford TN, Castellano FN, Coord. Chem. Rev., 254, 2560 (2010)
  16. Singh-Rachford TN, Haefele A, Ziessel R, Castellano FN, J. Am. Chem. Soc., 130(48), 16164 (2008)
  17. Yakutkin V, Aleshchenkov S, Chernov S, Miteva T, Nelles G, Cheprakov A, Baluschev S, Chem. Eur. J., 14, 9846 (2008)
  18. Singh-Rachford TN, Castellano FN, J. Phys. Chem. A, 113(20), 5912 (2009)
  19. Khnayzer RS, Blumhoff J, Harrington JA, Haefele A, Deng F, Castellano FN, Chem. Commun., 48, 209 (2012)
  20. Kim JH, Kim JH, J. Am. Chem. Soc., 134, 17487 (2012)
  21. Liu Q, Yin BR, Yang TS, Yang YC, Shen Z, Yao P, Li FY, J. Am. Chem. Soc., 135(13), 5029 (2013)
  22. Kim JH, Kim JH, ACS Photonics, 2, 633 (2015)
  23. Kim JH, Deng F, Castellano FN, Kim JH, ACS Photonics, 1, 382 (2014)
  24. Ye C, Wang J, Wang X, Ding P, Liang Z, Tao X, Phys. Chem. Chem. Phys., 18, 3430 (2016)
  25. Tanaka K, Inafuku K, Chujo Y, Chem. Commun., 46, 4378 (2010)
  26. Turshatov A, Busko D, Baluschev S, Miteva T, Landfester K, New. J. Phys., 13 (2011)
  27. Wohnhaas C, Turshatov A, Mailander V, Lorenz S, Baluschev S, Miteva T, Landfester K, Macromol. Biosci., 11, 772 (2011)
  28. Askes SHC, Mora NL, Harkes R, Koning RI, Koster B, Schmidt T, Krosa A, Bonnet S, Chem. Commun., 51, 9137 (2015)
  29. Kwon OS, Kim JH, Cho JK, Kim JH, ACS Appl. Mater. Interfaces, 7, 318 (2015)
  30. Islangulov RR, Lott J, Weder C, Castellano FN, J. Am. Ceram. Soc., 129, 12652 (2007)
  31. Kim JH, Deng F, Castellano FN, Kim JH, Chem. Mater., 24, 2250 (2012)
  32. Singh-Rachford TN, Lott J, Weder C, Castellano FN, J. Am. Chem. Soc., 131(33), 12007 (2009)
  33. Merkel PB, Dinnocenzo JP, J. Lumines., 129, 303 (2009)
  34. Monguzzi A, Frigoli M, Larpent C, Tubino R, Meinardi F, Adv. Funct. Mater., 22(1), 139 (2012)
  35. Turshatov A, Busko D, Kiseleva N, Grage SL, Howard IA, Richards BS, ACS Appl. Mater. Interfaces, 9, 8280 (2017)
  36. Monguzzi A, Mauri M, Bianchi A, Dibbanti MK, Simonutti R, Meinardi F, J. Phys. Chem., 120, 2609 (2016)
  37. Liu Q, Yang TS, Feng W, Li FY, J. Am. Chem. Soc., 134(11), 5390 (2012)
  38. Kamada K, Sakagami Y, Mizokuro T, Fujiwara Y, Kobayashi K, Narushima K, Hirata S, Vacha M, Mater. Horiz., 4, 83 (2017)
  39. Oldenburg M, Turshatov A, Busko D, Wollgarten S, Adams M, Baroni N, Welle A, Redel E, Woll C, Richards BS, Howard IA, Adv. Mater., 28(38), 8477 (2016)
  40. Thevenaz DC, Lee SH, Guignard F, Balog S, Lattuada M, Weder C, Simon YC, Macromol. Rapid Commun., 37(10), 826 (2016)
  41. Yanai N, Kimizuka N, Chem. Commun., 52, 5354 (2016)
  42. Kouno H, Ogawa T, Amemori S, Mahato P, Yanai N, Kimizuka N, Chem. Sci., 7, 5224 (2016)
  43. Mahato P, Yanai N, Sindoro M, Granick S, Kimizuka N, J. Am. Chem. Soc., 138(20), 6541 (2016)
  44. Kim HI, Weon SH, Kang HM, Hagstrom AL, Kwon OS, Lee YS, Choi WY, Kim JH, Environ. Sci. Technol., 50, 11184 (2016)
  45. Kim HI, Kwon OS, Kim SJ, Choi WY, Kim JH, Energy Environ. Sci., 9, 1063 (2016)
  46. Nattestad A, Cheng YY, MacQueen RW, Schulze TF, Thompson FW, Mozer AJ, Fuckel B, Khoury T, Crossley MJ, Lips K, Wallace GG, Schmidt TW, J. Phys. Chem. Lett., 4(12), 2073 (2013)
  47. Cheng YY, Fuckel B, MacQueen RW, Khoury T, Clady RGCR, Schulze TF, Ekins-Daukes NJ, Crossley MJ, Stannowski B, Lips K, Schmidt TW, Energy Environ. Sci., 5, 6953 (2012)
  48. Schulze TF, Czolk J, Cheng YY, Fuckel B, MacQueen RW, Khoury T, Crossley MJ, Stannowski B, Lips K, Lemmer J, Colsmann A, Schmidt TW, J. Phys. Chem., 116, 22794 (2012)
  49. Schulze TF, Schmidt TW, Energy Environ. Sci., 8, 103 (2015)
  50. Cheng YY, Nattestad A, Schulze TF, MacQueen RW, Fuckel B, Lips K, Wallace GG, Khoury T, Crossley MJ, Schmidt TW, Chem. Sci., 7, 559 (2016)
  51. Li C, Koenigsmann C, Deng F, Hagstrom A, Schmuttenmaer CA, Kim JH, ACS Photonics, 3, 784 (2016)
  52. Cheng YY, Nattestad A, Schulze TF, MacQueen RW, Fuckel B, Lips K, Wallace GG, Khoury T, Crossley MJ, Schmidt TW, Chem. Sci., 7, 559 (2016)
  53. Hagstrom AL, Deng F, Kim JH, ACS Photonics, 4, 127 (2017)
  54. Wohnhaas C, Mailaender V, Droge M, Filatov MA, Busko D, Avlasevich Y, Baluschev S, Miteva T, Landfester K, Turshatov A, Macromol. Biosci., 13, 1422 (2013)
  55. Kwon OS, Song HS, Conde J, Kim HI, Artzi N, Kim JH, ACS Nano, 10, 1512 (2016)
  56. Liu Q, Wang W, Zhan C, Yang T, Kohane DS, Nano Lett., 16, 4516 (2016)
  57. Tian B, Wang Q, Su Q, Feng W, Li F, Biomaterials, 112, 10 (2017)
  58. Yanai N, Kozue M, Amemori S, Kabe R, Adachic C, Kimizuka N, J. Mater. Chem., 4, 6447 (2016)
  59. Zhao W, Castellano FN, J. Phys. Chem. A, 110(40), 11440 (2006)
  60. Jiang X, Guo X, Peng J, Zhao D, Ma Y, ACS Appl. Mater. Interfaces, 8, 11441 (2016)
  61. Peng J, Guo X, Jiang X, Zhao D, Ma Y, Chem. Sci., 7, 1233 (2016)