화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.27, No.12, 699-704, December, 2017
Surface Analysis of Plasma Pretreated Sapphire Substrate for Aluminum Nitride Buffer Layer
E-mail:
Recently, the use of an aluminum nitride(AlN) buffer layer has been actively studied for fabricating a high quality gallium nitride(GaN) template for high efficiency Light Emitting Diode(LED) production. We confirmed that AlN deposition after N2 plasma treatment of the substrate has a positive influence on GaN epitaxial growth. In this study, N2 plasma treatment was performed on a commercial patterned sapphire substrate by RF magnetron sputtering equipment. GaN was grown by metal organic chemical vapor deposition(MOCVD). The surface treated with N2 plasma was analyzed by x-ray photoelectron spectroscopy(XPS) to determine the binding energy. The XPS results indicated the surface was changed from Al2O3 to AlN and AlON, and we confirmed that the thickness of the pretreated layer was about 1 nm using high resolution transmission electron microscopy(HR-TEM). The AlN buffer layer deposited on the grown pretreated layer had lower crystallinity than the as-treated PSS. Therefore, the surface N2 plasma treatment on PSS resulted in a reduction in the crystallinity of the AlN buffer layer, which can improve the epitaxial growth quality of the GaN template.
  1. Lee YJ, Hwang JM, Hsu TC, Hsieh MH, Jou MJ, Lee BJ, LuTC, Kuo HC, Wang SC, IEEE Photonics Technol. Lett., 18, 1152 (2006)
  2. Amano H, Sawaki N, Akasaki I, Toyoda Y, Appl. Phys. Lett., 48, 353 (1986)
  3. Fujii T, Gao Y, Sharma R, Hu EL, DenBaars SP, Nakamura S, Appl. Phys. Lett., 84, 855 (2004)
  4. Kim SI, Kim B, Jang S, Kim AY, Park J, Byun D, J. Cryst. Growth, 326(1), 200 (2011)
  5. Kim DS, Jeong WS, Ko H, Lee JS, Byun D, Thin Solid Films, 641, 2 (2017)
  6. Ning XJ, Chien FR, Pirouz P, J. Mater. Res., 11, 580 (1996)
  7. Amano H, Akasaki I, Hiramatsu K, Koide N, Sawaki N, Thin Solid Films, 163, 415 (1988)
  8. Nakamura S, Jpn. J. Appl. Phys., 30, 1705 (1991)
  9. Wuu DS, Wang WK, Wen KS, Huang SC, Lin SH, Huang SY, Lin CF, Horng RH, Appl. Phys. Lett., 89, 161105 (2006)
  10. Beaumont B, Vennegues P, Gibart P, Phys. Status Solidi B, 227, 1 (2001)
  11. Park J, Kim DS, Jeong WS, Cho SH, Kim C, Ko HA, Lee D, Byun D, Mater. Sci. Tech. Jpn, 54, 112 (2017)
  12. Bockowski M, Grzegory I, Borysiuk J, Kamler G, Lucznik B, Wroblewski M, Kwiatkowski P, Jasik K, Krukowski S, Porowski S, J. Cryst. Growth, 281(1), 11 (2005)
  13. Celebioglu A, Vempati S, Ozgit-Akgun C, Biyikliab N, Uyar T, RSC Adv., 4, 61698 (2014)
  14. Lu W, Iwasa Y, Ou Y, Jinno D, Kamiyama S, Petersen PM, Ou H, RSC Adv., 7, 8090 (2017)
  15. Rosenberger L, Baird R, McCullen E, Auner G, Shreve G, Surf. Interface Anal., 40, 1254 (2008)
  16. Cho Y, Kim Y, Weber ER, Ruvimov S, Liliental-Weber Z, J. Appl. Phys., 852, 7909 (1999)
  17. Namkoong G, Doolittle WA, Brown AS, Losurdo M, Capezzuto P, Bruno G, J. Vac. Sci. Technol. B, 20(3), 1221 (2002)
  18. Soares GV, Bastos KP, Pezzi RP, Miotti L, Driemeier C, Baumvol IJR, inkle C, Lucovsky G, Appl. Phys. Lett., 84, 4992 (2004)
  19. Kienberger F, Pastushenko VP, Kada G, Puntheeranurak T, Chtcheglova L, Riethmueller C, Rankl C, Ebner A, Hinterdorfer P, Ultramicroscopy, 106, 822 (2006)
  20. Shevchuk AI, Hobson P, Lab MJ, Klenerman D, Krauzewicz N, Korchev YE, Biophys. J., 94, 4089 (2008)