Journal of Industrial and Engineering Chemistry, Vol.59, 192-195, March, 2018
Non-aqueous quasi-solid electrolyte for use in supercapacitors
E-mail:
Gel electrolytes have attracted increasing attention for use in supercapacitors. An ideal gel electrolyte usually solves several problems, including electrolyte leakage, corrosion of the liquid electrolyte, and electrolyte packing. In this study, to address these issues, tetraethylammonium tetrafluoroborate in propylene carbonate was integrated into a poly(ethylene glycol) dimethacrylate polymer matrix with azobisisobutyronitrile as a thermal initiator. The specific capacitance of this quasi-solid electrolyte was 22% higher than that of the corresponding liquid-based electrolyte at 1 mA cm 2. Further, a supercapacitor wrapped with the quasi-solid electrolyte exhibited energy and power densities of 39 Wh kg 1 and 2.5 kW kg 1, respectively. Notably, the quasi-solid-electrolyte-based supercapacitor was very stable when cycled at a high current density (5 mA cm 2), with only 31% of its initial capacitance lost after 10,000 cycles. Wrapping the supercapacitor with the non-aqueous quasi-solid electrolyte provided a solidified surface, which reduced contact with moisture and oxygen in the air, thereby solving the evaporation problem encountered with liquid electrolytes.
- Frackowiak E, Beguin F, Carbon, 39, 937 (2001)
- Frackowiak E, Beguin F, Carbon, 40, 1775 (2002)
- Simon P, Gogotsi Y, Dunn B, Science, 343(6176), 1210 (2014)
- Negre L, Daffos B, Turq V, Taberna PL, Simon P, Electrochim. Acta, 206, 490 (2016)
- Simon P, Gogotsi Y, Nat. Mater., 7(11), 845 (2008)
- Kang YJ, Chun SJ, Lee SS, Kim BY, Kim JH, Chung H, Lee SY, Kim W, ACS Nano, 6, 6400 (2012)
- Lee KT, Lee JF, Wu NL, Electrochim. Acta, 54(26), 6148 (2009)
- Jiang M, Zhu J, Chen C, Lu Y, Ge Y, Zhang X, ACS Appl. Mater. Interfaces, 8, 3473 (2016)
- Kalpana D, Renganathan NG, Pitchumani S, J. Power Sources, 157(1), 621 (2006)
- Sun G, Zhang X, Lin R, Yang J, Zhang H, Chen P, Angew. Chem.-Int. Edit., 54, 4651 (2015)
- Lu X, Yu M, Wang G, Tong Y, Li Y, Energy Environ. Sci., 7, 2160 (2014)
- Lu X, Yu M, Zhai T, Wang G, Xie S, Liu T, Liang C, Tong Y, Li Y, Nano Lett., 13, 2628 (2013)
- Meng C, Liu C, Chen L, Hu C, Fan S, Nano Lett., 10, 4025 (2010)
- Guo HL, Gao QM, J. Power Sources, 186(2), 551 (2009)
- Kadir MFZ, Majid SR, Arof AK, Electrochim. Acta, 55(4), 1475 (2010)
- Raghavan SR, Walls HJ, Khan SA, Langmuir, 16(21), 7920 (2000)
- Kang YJ, Chung H, Han CH, Kim W, Nanotechnology, 23, 065401 (2012)
- Vijayakumar V, Anothumakkool B, Torris A, Nair SB, Badiger MV, Kurungot S, J. Mater. Chem. A, 5, 8461 (2017)
- Chaudoy V, Van FT, Deschamps M, Ghamouss F, J. Power Sources, 342, 872 (2017)