화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.3, 626-636, March, 2018
Kinetics of perovskite-like oxygen carriers for chemical looping air separation
E-mail:
Chemical looping air separation gives an energy-efficient choice for oxygen production. We performed kinetic analysis of YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ, Y0.2Ti0.05Dy0.75BaCo4O7+δ, and Y0.15Zr0.1Dy0.75BaCo4O7+δ oxygen carriers in a CLAS process. TG experiments were conducted with heating rates of 0.5, 1, and 2 oC/min in a thermogravimetric analyzer. Further exploration is required to develop an appropriate oxygen carrier. So, we used the model-free approach, Starink method, to evaluate the apparent activation energy. And, masterplots method was applied to determine the most probable mechanism function. The results show that the distributed activation energies of oxidation/ reduction process are 189.42/286.22 kJ/mol, 197.70/324.87 kJ/mol, 195.41/310.4 kJ/mol, and 192.20/293.53 kJ/mol for YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ, Y0.2Ti0.05Dy0.75BaCo4O7+δ, and Y0.15Zr0.1Dy0.75BaCo4O7+δ oxygen carriers, respectively. Random nucleation and nuclei growth A model is the most suitable for oxidation process. The A model and D are the most suitable for the reduction process. Regarding YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ, Y0.2Ti0.05Dy0.75BaCo4O7+δ, and Y0.15Zr0.1Dy0.75BaCo4O7+δ kinetic, oxygen transfer materials are rate-determined by nucleation and nuclei growth. For eduction kinetic, the gas diffusion stage could also become a dominant step.
  1. Shah K, Moghtaderi B, Zanganeh J, Wall T, Fuel, 107, 356 (2013)
  2. Smith AR, Klosek J, Fuel Process. Technol., 70(2), 115 (2001)
  3. Moghtaderi B, Energy Fuels, 24(1), 190 (2010)
  4. Song H, Shah K, Doroodchi E, Wall T, Moghtaderi B, Energy Fuels, 28, 173 (2013)
  5. Song H, Shah K, Doroodchi E, Moghtaderi B, Energy Fuels, 28(1), 163 (2014)
  6. Shulman A, Cleverstam E, Mattisson T, Lyngfelt A, Energy Fuels, 23, 5269 (2009)
  7. Wang K, Yu QB, Xie HQ, Qin Q, Funct. Mater. Lett., 6(2), 135002 (2013)
  8. Song H, Shah K, Doroodchi E, Wall T, Moghtaderi B, Energy Fuels, 28(2), 1284 (2014)
  9. Wang K, Yu QB, Qin Q, Zuo ZL, J. Therm. Anal. Calorim., 119, 2221 (2014)
  10. Wang K, Yu QB, Qin Q, Energy Fuels, 27(9), 5466 (2013)
  11. Ishida M, Yamamoto M, Ohba T, Energy Conv. Manag., 43(9-12), 1469 (2002)
  12. Mattisson T, Leion H, Lyngfelt A, Fuel, 88(4), 683 (2009)
  13. Arjmand M, Azad AM, Leion H, Lyngfelt A, Mattisson T, Energy Fuels, 25(11), 5493 (2011)
  14. Wang K, Yu QB, Qin Q, J. Therm. Anal. Calorim., 112(2), 747 (2013)
  15. Azimi G, Leion H, Ryden M, Mattisson T, Lyngfelt A, Energy Fuels, 27(1), 367 (2013)
  16. Wang K, Yu QB, Qin Q, Zuo Z, J. Therm. Anal. Calorim., 119(3), 2221 (2015)
  17. Zhao K, He F, Huang Z, Wei G, Zheng A, Li H, Zhao Z, Korean J. Chem. Eng., 34(6), 1651 (2017)
  18. Kwak BS, Park NK, Baek JI, Ryu HJ, Kang MS, Korean J. Chem. Eng., 34(7), 1936 (2017)
  19. Motohashi T, Kadita S, Fjellvag H, Karppinen M, Yamauchi H, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 148(1), 196 (2008)
  20. Karppinen M, Yanauchi H, Otani S, Fujita T, Motohashi T, Huang YH, Valkeapaa M, Fjellvag H, Chem. Mater., 18(2), 490 (2006)
  21. Kadita S, Kappinen M, Motohashi T, Yamauchi H, Chem. Mater., 20, 6378 (2008)
  22. Wang S, Hao HS, Zhu BF, Jia JF, Hu X, J. Mater. Sci., 43(15), 5385 (2008)
  23. Hao HS, He QL, Cheng YG, Zhao LM, J. Phys. Chem. Solids, 75(4), 495 (2014)
  24. Zhang SM, MA Dissertation, ZhengZhou University (2011).
  25. Guo LJ, MA Dissertation, ZhengZhou University (2005).
  26. Kozeeva LP, Kameneva MY, Lavrov AN, Podberezskaya NV, Inorg Mater., 49(6), 626 (2013)
  27. Parkkima O, Yamauchi H, Karppinen M, Chem. Mater., 25(4), 599 (2013)
  28. Martin V, Solid State Sci., 7(10), 1163 (2005)
  29. Rasanen S, Motohashi T, Yamauchi H, Kappinen M, J. Solid State Chem., 183, 692 (2010)
  30. Komiyama T, Motohashi T, Masubuchi Y, Kikkawa S, Mater. Res. Bull., 45(10), 1527 (2010)
  31. Rasanen S, Parkkima O, Rautama EL, Yamauchi H, Karppinen M, Solid State Ion., 208, 31 (2012)
  32. Jankovic B, Adnadevic B, Jovanovic J, Thermochim. Acta, 452(2), 106 (2007)
  33. Vyazovkin S, Thermochim. Acta, 355, 145 (2000)
  34. Brown ME, Dollimore D, Galwey AK, Elsevier, Amsterdam., 22, 41 (1980).
  35. Vyazovkin S, Wight CA, Thermachim. Acta, 341, 53 (1999)
  36. Vyazovkin S, Wight CA, J. Phys. Chem. A, 101(39), 7217 (1997)
  37. Coats AW, Redfern JP, Nature, 201, 68 (1964)
  38. Coats AW, Redfern JP, J. Polym. Sci. Part B: Polym. Lett., 3, 917 (1965)
  39. Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965)
  40. Doyle CD, Anal. Chem., 33, 77 (1961)
  41. Doyle CD, J. Appl. Polym. Sci., 5, 285 (1961)
  42. Doyle CD, Nature, 207, 290 (1965)
  43. Kissinger HE, Anal. Chem., 29, 1702 (1957)
  44. Akahira T, Sunose T, Res. Rep. Chiba. Inst. Technol., 16, 22 (1971)
  45. Vyazovkin SV, Lesnikovich AI, Thermochim. Acta, 34(3), 609 (1988)
  46. Agrawal PK, Thermochim. Acta, 203, 93 (1992)
  47. Starink MJ, Thermochim. Acta, 288(1-2), 97 (1996)
  48. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N, Thermochim. Acta, 520(1-2), 1 (2011)
  49. Wanjun T, Yuwen L, Hen Z, Cunxin W, Thermochim. Acta, 74, 309 (2003)
  50. Gotor FJ, Criado JM, Malek J, Koga N, J. Phys. Chem. A, 104(46), 10777 (2000)
  51. Wanjun T, Yuwen L, Hen Z, Cunxin W, Thermochim. Acta, 74, 309 (2003)
  52. Jin H, Okamoto T, Ishida M, Energy Fuels, 12(6), 1272 (1998)
  53. Halikia I, Neou-Syngouna P, Kolitsa D, Thermochim. Acta, 320(1-2), 75 (1998)
  54. Perkins C, Lichty P, Weimer AW, Chem. Eng. Sci., 62(21), 5952 (2007)
  55. Pineau A, Kanari N, Gaballah I, Thermochim. Acta, 447(1), 89 (2006)
  56. Hossain MM, de Lasa HI, Chem. Eng. Sci., 65(1), 98 (2010)
  57. Hossain MM, de Lasa HI, Chem. Eng. Sci., 63(18), 4433 (2008)
  58. Sun YQ, Sridhar S, Seetharaman S, Wang H, Liu LL, Wang XD, Zhang ZT, Sci. Rep., 6, 1 (2016)
  59. Hossain MM, de Lasa HI, Chem. Eng. Sci., 65(1), 98 (2010)
  60. Hossain MM, de Lasa HI, Chem. Eng. Sci., 63(18), 4433 (2008)
  61. Hancock JD, Sharp JH, J. Am. Ceram. Soc., 55(2), 74 (1972)