화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.28, No.2, 118-123, February, 2018
질산산화법을 이용한 SiO2/Si 구조의 계면결함 제거
Removal of Interface State Density of SiO2/Si Structure by Nitric Acid Oxidation Method
E-mail:
5 nm-thick SiO2 layers formed by plasma-enhanced chemical vapor deposition (PECVD) are densified to improve the electrical and interface properties by using nitric acid oxidation of Si (NAOS) method at a low temperature of 121 °C. The physical and electrical properties are clearly investigated according to NAOS times and post-metallization annealing (PMA) at 250 °C for 10 min in 5 vol% hydrogen atmosphere. The leakage current density is significantly decreased about three orders of magnitude from 3.110 × 10-5 A/cm2 after NAOS 5 hours with PMA treatment, although the SiO2 layers are not changed. These dramatically decreases of leakage current density are resulted from improvement of the interface properties. Concentration of suboxide species (Si1+, Si2+ and Si3+) in SiOx transition layers as well as the interface state density (Dit) in SiO2/Si interface region are critically decreased about 1/3 and one order of magnitude, respectively. The decrease in leakage current density is attributed to improvement of interface properties though chemical method of NAOS with PMA treatment which can perform the oxidation and remove the OH species and dangling bond.
  1. Thompson SE, Parthasarathy S, Mater. Today, 9, 20 (2006)
  2. Deal BE, Grove AS, J. Appl. Phys., 36, 3770 (1965)
  3. Crowell JE, Tedder LL, Cho HC, Cascarano FM, Logan MA, J. Electron Spectrosc. Relat. Phenom., 54, 1097 (1990)
  4. Bogart KH, Dalleska NF, Bogart GR, Fisher ER, J. Vac. Sci. Technol. A, 13(2), 476 (1995)
  5. Hattangady SV, Alley RG, Fountain GG, Markunas RJ, Lucovsky G, Temple D, J. Appl. Phys., 73, 7635 (1993)
  6. Smith DL, Alimonda AS, J. Electrochem. Soc., 140, 1496 (1993)
  7. Hsieh SW, Chang CY, Hus SC, J. Appl. Phys., 74, 2636 (1993)
  8. Kobayashi H, Asuha, Maida O, Takahashi M, Iwasa H, J. Appl. Phys., 94, 7328 (2003)
  9. Asuha, Takahashi M, Kobayashi H, Appl. Phys. Lett., 85, 3783 (2004)
  10. Im SS, Tanaka M, Imai S, Takahashi M, Kobayashi H, Surf. Sci., 600, 2523 (2006)
  11. Asuha, Kobayashi T, Maida O, Inoue M, Takahashi M, Todokoro Y, Kobayashi H, Appl. Phys. Lett., 81, 3410 (2002)
  12. Kobayashi T, Takahashi M, Iwasa H, Kobayashi H, Surf. Sci., 547, 275 (2003)
  13. Choi J, Joo S, Park TJ, Kim WB, Appl. Surf. Sci., 413, 92 (2017)
  14. Duffy MT, Kern W, RCA Rev., 31, 742 (1970)
  15. Hochella MF, Carim AH, Surf. Sci., 197, L260 (1988)
  16. Sze SM, Ng KK, Physics of Semiconductor Devices, 2nd ed., p. 380, John Wiley & Sons, USA (1981).
  17. Grunthaner PJ, Hecht MH, Grunthaner FJ, Johnson NM, J. Appl. Phys., 61, 629 (1987)
  18. Rochet F, Poncey C, Dufour G, Roulet H, Guillot C, Sirotti F, J. Non-Cryst. Solids, 216, 148 (1997)
  19. Grunthaner FJ, Grunthaner PJ, Mat. Sci. Rep., 1, 65 (1986)
  20. Nicollian EH, Goetzberger A, Bell Sys. Tech. J., 46, 1055 (1967)
  21. Fukuda K, Suzuki S, Tanaka T, Arai K, Appl. Phys. Lett., 76, 1585 (2000)
  22. Terman LM, Solid-State Electron., 5, 285 (1962)
  23. Werner F, Veith B, Zielke D, Kuhnemund L, Tegenkamp C, Schmidt J, J. Appl. Phys., 109, 113710 (2011)