화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.7, 1441-1449, July, 2018
Purification of textile wastewater by using coated Sr/S/N doped TiO2 nanolayers on glass orbs
E-mail:
Simultaneous doping of TiO2 nanoparticles with three elements including Sr, S, and N is reported. The resulting material shows superior photocatalytic performance toward degradation of textile waste under visible and sunlight. The pure and doped TiO2 nanolayers were prepared by sol-gel method and were fixed on a bed of glass orbs. The immobilized TiO2 were characterized by a variety of techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), spectroscopy diffusion reflection (DRS), energy dispersive X-ray spectrometry (EDS) and elemental analysis (CHNS). The photocatalytic activity of the prepared fixed-bed materials toward degradation of the textile wastes was determined by using ultraviolet-visible spectroscopy (UV-Vis) and measurement of the chemical oxygen demand testing (COD). The best photocatalytic activity was observed with the use of Sr/S/N-TiO2 nano-layers. Afterwards, the experimental conditions were optimized by tuning reaction parameters, including amount of doped metal ion on photocatalyst structure, sample solution pH and photoreactor output flow rate. The results confirmed that at natural pH 5.9 of sample solution, maximum decomposition of 91-99% of azo dyes was obtained in 8 h under visible irradiation. Finally, the experiments were repeated under 1.5 AM sunlight with high volume of reactants in order to confirm the cost-effectiveness of the designed photocatalyst.
  1. Lee SY, Park SJ, J. Ind. Eng. Chem., 19(6), 1761 (2013)
  2. Guesh K, Mayoral A, Marquez_Alvarez C, Chebude Y, Diaz I, Microporous Mesoporous Mater., 225, 88 (2016)
  3. Chen BY, Zhang MM, Chang CT, Ding YT, Lin KL, Chiou CS, Hsueh CC, Xu HZ, Bioresour. Technol., 101(12), 4737 (2010)
  4. Arslan-Alaton I, Ferry JL, Dyes Pigment., 54, 25 (2002)
  5. Golka K, Kopps S, Myslak ZW, Toxicol. Lett., 151, 203 (2004)
  6. Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W, Catal. Today, 147(1), 1 (2009)
  7. Brienza M, Ahmed MM, Escande A, Plantard G, Scrano L, Chiron S, Bufo SA, Goetz V, Chemosphere, 148, 473 (2016)
  8. Cheng M, Zeng GM, Huang DL, Lai C, Xu P, Zhang C, Liu Y, Chem. Eng. J., 284, 582 (2016)
  9. Suzuki H, Araki S, Yamamoto H, J. Water. Proc. Eng., 7, 54 (2015)
  10. Rao PM, Cai L, Liu C, Cho IS, Lee CH, Weisse JM, Yang P, Zheng X, Nano. Lett., 14, 1099 (2014)
  11. Kubacka A, Fernandez-Garcia M, Colon G, Chem. Rev., 112, 1555 (2011)
  12. Rauf MA, Ashraf SS, Chem. Eng. J., 151(1-3), 10 (2009)
  13. Malengreaux CM, Leonard GML, Pirard SL, Cimieri I, Lambert SD, Bartlett JR, Heinrichs B, Chem. Eng. J., 243, 537 (2014)
  14. Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA, RSC Adv., 4, 37003 (2014)
  15. Gaya UI, Abdullah AH, J. Photochem. Photobiol. C Photochem. Rev., 9, 1 (2008)
  16. Bhatkhande DS, Pangarkar VG, Beenackers AACM, J. Chem. Technol. Biotechnol., 77, 102 (2001)
  17. Mahmoodi NM, Arami M, Limaee NY, J. Hazard. Mater., 133(1-3), 113 (2006)
  18. Ivanova I, Schneider J, Gutzmann H, Kliemann JO, Gartner F, Klassen T, Bahnemann D, Mendive CB, Catal. Today, 209, 84 (2013)
  19. Zangeneh H, Zinatizadeh AAL, Habibi M, Akia M, Isa MH, J. Ind. Eng. Chem., 26, 1 (2015)
  20. Umare SS, Charanpahari A, Sasikala R, Mater. Chem. Phys., 140(2-3), 529 (2013)
  21. Palmas S, Da Pozzo A, Mascia M, Vacca A, Ricci PC, Chem. Eng. J., 211-212, 285 (2012)
  22. Malengreaux CM, Leonard GML, Pirard SL, Cimieri I, Lambert SD, Bartlett JR, Heinrichs B, Chem. Eng. J., 243, 537 (2014)
  23. Asahi R, Morikava T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
  24. Naraginti S, Thejaswini TVL, Prabhakaran D, Sivakumar A, Satyanarayana VSV, Prasad ASA, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 149, 571 (2015)
  25. Akpan UG, Hameed BH, Appl. Catal. A: Gen., 375(1), 1 (2010)
  26. Tseng TK, Lin YS, Chen YJ, Chu H, Int. J. Mol. Sci., 11(6), 2336 (2010)
  27. Yang MC, Yang TS, Wong MS, Thin Solid Films, 469-470, 1 (2004)
  28. Sonawane RS, Kale BB, Dongare MK, Mater. Chem. Phys., 85(1), 52 (2004)
  29. Zahedi F, Behpour M, Ghoreishi SM, Khalilian H, Sol. Energy, 120, 287 (2015)
  30. Behpour M, Atouf V, Appl. Surf. Sci., 258(17), 6595 (2012)
  31. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD, Appl. Catal. B: Environ., 125, 331 (2012)
  32. Zhang J, Zhou P, Liu J, Yu J, Phys. Chem. Chem. Phys., 16, 20382 (2014)
  33. Ma LQ, Xu WC, Zhu SL, Cui ZD, Yang XJ, Inoue A, Mater. Chem. Phys., 170, 186 (2016)
  34. Macwan DP, Dave PN, Chaturvedi S, J. Mater. Sci., 46(11), 3669 (2011)
  35. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC, J. Phys. Chem. B, 107(19), 4545 (2003)
  36. Rattanakam R, Supothina S, Res. Chem. Intermed., 35, 263 (2009)
  37. Mamane H, Horovitz I, Lozzi L, Di Camillo D, Avisar D, Chem. Eng. J., 257, 159 (2014)
  38. Sood S, Umar A, Mehta SK, Sinha ASK, Kansal SK, Ceram. Int., 41, 3533 (2015)
  39. Zahedi F, Behpour M, Ghoreishi SM, Khalilian H, Sol. Energy, 120, 287 (2015)
  40. Konstantinou IK, Albanis TA, Appl. Catal. B: Environ., 49(1), 1 (2004)
  41. Hsieh SH, Chen WJ, Wu CT, Appl. Surf. Sci., 340, 9 (2015)