화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.10, 1994-2000, October, 2018
Acid-catalyzed regeneration of fatty-acid-adsorbed γ-alumina via transesterification with methanol
E-mail:
Fatty-acid-adsorbed γ-alumina was regenerated via transesterification using methanol with sulfuric acid as a catalyst. The fatty acids adsorbed on γ-alumina were converted to fatty acid methyl esters (FAME) and desorbed from the γ-alumina during the acid-catalyzed methanol regeneration process. A series of experiments studied the effect of the operating parameters (temperature, amount of sulfuric acid (wt%), methanol-solution-to-γ-alumina weight ratio, and regeneration time) on the acid-catalyzed methanol regeneration process. The chemically adsorbed fatty acids were desorbed effectively above 100 °C when the amount of sulfuric acid was 3 wt%, the methanol-solution-to-γ-alumina weight ratio was higher than 5 : 1, and the regeneration time was longer than 30 min. This new approach provides an ecofriendly process that operates at much lower temperatures than other methods of regeneration (thermal and supercritical methanol) while producing a renewable fuel.
  1. Hair ML, Infrared Spectroscopy in Surface Chemistry, Marcel Dekker (1967).
  2. Karaman ME, Pashley RM, Waite TD, Hatch SJ, Bustamante H, Colloids Surf. A: Physicochem. Eng. Asp., 129-130, 239 (1997)
  3. Bhosle BM, Subramanian R, J. Food Eng., 69(4), 481 (2005)
  4. Cho SY, Kwon TW, Yoon SH, J. Am. Oil Chem. Soc., 67, 558 (1990)
  5. Makasci A, Arisoy K, Telefoncu A, Turk. J. Chem., 20, 258 (1996)
  6. De BK, Bhattacharyya DK, J. Am. Oil Chem. Soc., 76, 1243 (1999)
  7. Pina CG, Meirelles AJA, J. Am. Oil Chem. Soc., 77, 553 (2000)
  8. Goncalves CB, Rodrigues CEC, Marcon EC, Meirelles AJA, Sep. Purif. Technol., 160, 106 (2016)
  9. Zahrina I, Nasikin M, Krisanti E, Mulia K, Food Chem., 240, 490 (2018)
  10. Vaszquez L, Hurtado-Benavides AM, Reglero G, Fornari T, Ibanez E, Senorans FJ, J. Food Eng., 90(4), 463 (2009)
  11. Tian L, Zhou M, Pan X, Xiao G, Liu Y, Korean J. Chem. Eng., 32(8), 1649 (2015)
  12. Azmi RA, Goh PS, Ismail AF, Lau WJ, Ng BC, Othman NH, Noor AM, Yusoff MSA, J. Food Eng., 166, 165 (2015)
  13. Rawat M, Bulasara VK, Korean J. Chem. Eng., 35(3), 725 (2018)
  14. Ayorinde FO, Hassan M, US Patent, 5414100A (1995).
  15. Woo HS, Shin S, Youn TJ, Lee YW, Ind. Eng. Chem. Res., 55(39), 10420 (2016)
  16. Schuchardt U, Sercheli R, Vargas RM, J. Braz. Chem. Soc., 9, 199 (1998)
  17. Meher LC, Sagar DV, Naik SN, Renew. Sust. Energ. Rev., 10, 248 (2006)