- Previous Article
- Next Article
- Table of Contents
Clean Technology, Vol.24, No.3, 157-165, September, 2018
웨이퍼 표면의 Si3N4 파티클 제거를 위한 초임계 이산화탄소 세정
The Removal of Si3N4 Particles from the Wafer Surface Using Supercritical Carbon Dioxide Cleaning
E-mail:
초록
본 연구에서는 초임계 이산화탄소와 공용매 첨가물을 이용하여 실리콘 웨이퍼 표면의 Si3N4 파티클을 제거하는 기술을 조사하였다. 우선, 몇 가지 계면활성제와 첨가제에 관한 초임계 이산화탄소 용해도 및 파티클 분산성 평가를 통하여 초임계 공정에 대한 적합성을 확인하였다. 다양한 변수를 조정하여 파티클 세정 실험을 진행하여 최적의 제거 조건을 확립하였다. 실험에 사용된 계면활성제는 파티클 제거 효과가 떨어졌으며, 실험 후 이차 오염물이 형성됨을 확인하였다. 반면 trimethyl phosphate는 IPA공용매와 미량의 HF와 혼합된 세정 첨가제로서 초임계 이산화탄소에 5 wt%로 포함한 유체로 온도 50 ℃, 압력 2000 psi에서 15 mL min-1의 유속으로 4분 간 세정한 결과, 85%의 파티클 제거 효율을 나타내었다.
In this study, the removal of Si3N4 particles from the surface of a silicon wafer was investigated by using supercritical carbon dioxide, the IPA co-solvent and cleaning additive chemicals. First, the solubility of several surfactants and binders in supercritical carbon dioxide solubility and particle dispersibility in the binders were evaluated in order to confirm their suitability for the supercritical cleaning process. Particle removal experiments were carried out with adjusting various process parameters and reaction conditions. The surfactants used in the experiment showed little particle removal effect, producing secondary contamination on the surface of wafers. On the other hand, 5 wt% (with respect to scCO2) of the cleaning additive mixture of trimethyl phosphate, IPA, and trace HF resulted in 85% of particle removal efficiency after scCO2 flowing for 4 minutes at 50 ℃, 2000 psi, and the flow rate of 15 mL min-1.
- DeSimone JM, Romack TJ, Betts DE, Mcclain JB, “Cleaning Process Using Carbon Dioxide as a Solvent and Employing Molecularly Engineered Surfactants,” U. S. Patent No. 5,866,005 (1999).
- Campbell ML, Apodaca DL, Yates MZ, McCleskey TM, Birnbaum ER, Langmuir, 17(18), 5458 (2001)
- Cooper AI, Wood CD, Holmes AB, Ind. Eng. Chem. Res., 39(12), 4741 (2000)
- Hwang HS, Yuvaraj H, Kim WK, Lee WK, Gal YS, Lim KT, J. Polym. Sci. A: Polym. Chem., 46, 1365 (2007)
- Ganapathy HS, Park SY, Lee WK, Park JM, Lim KT, “Polymeric Nanoparticles from Macroscopic Crystalline Monomers by Facile Solid-state Polymerization in Supercritical CO2,” 51, 264-269 (2009).
- O'Shea KE, Kirmse KM, Fox MA, Johnston KP, J. Phys. Chem., 95, 7863 (1991)
- Jones CA, Zweber A, Deyoung JP, McClain JB, Carbonell R, DeSimone JM, Crit. Rev. Solid. State, 29, 97 (2004)
- Weibel GL, Ober CK, Microelectron. Eng., 65, 145 (2003)
- Kim DH, Lim ES, Lim KT, Clean Technol., 17(4), 300 (2011)
- Kim DH, Lim ES, Lim KT, Clean Technol., 17(4), 300 (2011)
- Kim DW, Heo H, Lim KT, Clean Technol., 23(4), 357 (2017)
- Kim DW, Kim YH, Lim KT, J. Korean Soc. Imaging Sci. Technol., 20(4), 16 (2014)
- Jung JM, Kwon HS, Lee WK, Choi BC, Kim HG, Lim KT, Microelectron. Eng., 87, 1680 (2010)
- Hwang HS, Bae JH, Jung JM, Lim KT, Microelectron. Eng., 87, 1696 (2010)
- Jung JM, Yoon EJ, Lim ES, Choi BC, Kim SY, Lim KT, Microelectron. Eng., 88, 3448 (2011)
- Lee MY, Do KM, Ganapathy HS, Lo YS, Kim JJ, Choi SJ, Lim KT, J. Supercrit. Fluids, 42(1), 150 (2007)
- Tanaka T, et al., “Mechanism of Resist Pattern Collapse during Development Process,” 32 Issue 12 (1993).
- Bae JH, Alam M, Jung JM, Gal YS, Lee HS, Kim HG, Lim KT, Microelectron. Eng., 86, 128 (2009)
- Yuvaraj H, Johnston KP, Lim KT, Microelectron. Eng., 86, 165 (2009)
- Kim SH, Yuvaraj H, Jeong YT, Park C, Kim SW, Lim KT, Microelectron. Eng., 86, 171 (2009)