화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.11, 2232-2240, November, 2018
Valorization of galactose into levulinic acid via acid catalysis
E-mail:
We applied methanesulfonic acid (MSA) as a green catalyst to produce levulinic acid (LA) from monomeric sugars. To optimize reaction factors and assess the effect of reciprocal interactions, a statistical experimental design was applied. Optimized result of 40.7% LA yield was obtained under the following conditions: 60 g/L galactose, 0.4M MSA at 188 °C for 26.7 min. On the other hand, 66.1% LA yield was achieved under 60 g/L fructose and 0.4M MSA at 188 °C for 36 min conditions. For the effect of combined severity factor on the LA yield from galactose, the LA yield showed a peaked pattern, which was linearly increased until a CSF 3.2 and then diminished with a high CSF. Moreover, it was closely fitted to a non-linear Gaussian peak pattern with a high regression value of 0.989. These results suggest that MSA and galactose, derived from marine red macro-algae, can potentially be applied for the conversion into platform chemicals.
  1. Bozell JJ, Petersen GR, Green Chem., 12, 539 (2010)
  2. Kamm B, Gruber PR, Kamm M, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010).
  3. Werpy T, Petersen G, NREL/TP-510-35523, National Renewable Energy Laboratory, Golden, CO (2004).
  4. Mukherjee A, Dumont MJ, Raghauan V, Biomass Bioenerg., 72, 143 (2015)
  5. van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499 (2013)
  6. Morone A, Apte M, Pandey RA, Renew. Sust. Energ. Rev., 51, 548 (2015)
  7. Hayes DJ, Fitzpatrick S, Hayes MHS, Ross JRH, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2008).
  8. Rackemann DW, Doherty WOS, Biofuels Bioprod. Bioref., 5, 198 (2011)
  9. Zang H, Yu S, Yu P, Ding H, Du Y, Yang Y, Zhang Y, Carbohydr. Res., 442, 1 (2017)
  10. Jeong GT, Ra CH, Hong YK, Kim JK, Kong IS, Kim SK, Park DH, Bioprocess. Biosyst. Eng., 38, 207 (2015)
  11. Park MR, Kim HS, Kim SK, Jeong GT, Fuel Process. Technol., 172, 115 (2018)
  12. Omari KW, Besaw JE, Kerton FM, Green Chem., 14, 1480 (2012)
  13. Rackemann DW, Bartley JP, Doherty WOS, Ind. Crop. Prod., 52, 46 (2014)
  14. Wang YX, Pedersen CM, Deng TS, Qiao Y, Hou XL, Bioresour. Technol., 143, 384 (2013)
  15. Meinita MDN, Kang JY, Jeong GT, Koo HM, Park SM, Hong YK, J. Appl. Phycol., 24, 857 (2012)
  16. Percival E, Br. Phycol. J., 14, 103 (1979)
  17. Gernon MD, Wu M, Buszta T, Janney P, Green Chem., 1, 127 (1999)
  18. Mthembu LD, Durban University of Technology, Durban, South Africa, Master Thesis (2015).
  19. Jeong GT, Park DH, Appl. Biochem. Biotechnol., 161(1-8), 41 (2010)
  20. Scordia D, Cosentino SL, Jeffries TW, Biomass Bioenerg., 59, 540 (2013)
  21. Lee SB, Kim SK, Hong YK, Jeong GT, Algal Res., 13, 303 (2016)
  22. Akien GR, Qi L, Horvath IT, Chem. Commun., 48, 5850 (2012)
  23. Mija A, van der Waal JC, Pin JM, Guigo N, de Jong E, Constr. Build. Mater., 139, 594 (2017)
  24. Ya’aini N, Amin NAS, Endud S, Microporous Mesoporous Mater., 171, 14 (2013)
  25. Rasmussen H, Sorensen HR, Meyer AS, Carbohydr. Res., 385, 45 (2014)
  26. De S, Dutta S, Saha B, Green Chem., 13, 2859 (2011)
  27. Hansen TS, Mielby J, Riisager A, Green Chem., 13, 109 (2011)
  28. Hu X, Wu LP, Wang Y, Song Y, Mourant D, Gunawan R, Gholizadeh M, Li CZ, Bioresour. Technol., 133, 469 (2013)
  29. Yang Y, Hu CW, Abu-Omar MM, Bioresour. Technol., 116, 190 (2012)
  30. Kim DH, Lee SB, Kim SK, Park DH, Jeong GT, Bioenerg. Res., 9, 1155 (2016)
  31. Kim HS, Kim SK, Jeong GT, J. Ind. Eng. Chem., 63, 48 (2018)
  32. Kim HS, Park MR, Kim SK, Jeong GT, Korean J. Chem. Eng., 35(6), 1290 (2018)
  33. Park MR, Kim SK, Jeong GT, Algal Res., 31, 116 (2018)