Korean Journal of Chemical Engineering, Vol.35, No.11, 2232-2240, November, 2018
Valorization of galactose into levulinic acid via acid catalysis
E-mail:
We applied methanesulfonic acid (MSA) as a green catalyst to produce levulinic acid (LA) from monomeric sugars. To optimize reaction factors and assess the effect of reciprocal interactions, a statistical experimental design was applied. Optimized result of 40.7% LA yield was obtained under the following conditions: 60 g/L galactose, 0.4M MSA at 188 °C for 26.7 min. On the other hand, 66.1% LA yield was achieved under 60 g/L fructose and 0.4M MSA at 188 °C for 36 min conditions. For the effect of combined severity factor on the LA yield from galactose, the LA yield showed a peaked pattern, which was linearly increased until a CSF 3.2 and then diminished with a high CSF. Moreover, it was closely fitted to a non-linear Gaussian peak pattern with a high regression value of 0.989. These results suggest that MSA and galactose, derived from marine red macro-algae, can potentially be applied for the conversion into platform chemicals.
- Bozell JJ, Petersen GR, Green Chem., 12, 539 (2010)
- Kamm B, Gruber PR, Kamm M, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010).
- Werpy T, Petersen G, NREL/TP-510-35523, National Renewable Energy Laboratory, Golden, CO (2004).
- Mukherjee A, Dumont MJ, Raghauan V, Biomass Bioenerg., 72, 143 (2015)
- van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499 (2013)
- Morone A, Apte M, Pandey RA, Renew. Sust. Energ. Rev., 51, 548 (2015)
- Hayes DJ, Fitzpatrick S, Hayes MHS, Ross JRH, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2008).
- Rackemann DW, Doherty WOS, Biofuels Bioprod. Bioref., 5, 198 (2011)
- Zang H, Yu S, Yu P, Ding H, Du Y, Yang Y, Zhang Y, Carbohydr. Res., 442, 1 (2017)
- Jeong GT, Ra CH, Hong YK, Kim JK, Kong IS, Kim SK, Park DH, Bioprocess. Biosyst. Eng., 38, 207 (2015)
- Park MR, Kim HS, Kim SK, Jeong GT, Fuel Process. Technol., 172, 115 (2018)
- Omari KW, Besaw JE, Kerton FM, Green Chem., 14, 1480 (2012)
- Rackemann DW, Bartley JP, Doherty WOS, Ind. Crop. Prod., 52, 46 (2014)
- Wang YX, Pedersen CM, Deng TS, Qiao Y, Hou XL, Bioresour. Technol., 143, 384 (2013)
- Meinita MDN, Kang JY, Jeong GT, Koo HM, Park SM, Hong YK, J. Appl. Phycol., 24, 857 (2012)
- Percival E, Br. Phycol. J., 14, 103 (1979)
- Gernon MD, Wu M, Buszta T, Janney P, Green Chem., 1, 127 (1999)
- Mthembu LD, Durban University of Technology, Durban, South Africa, Master Thesis (2015).
- Jeong GT, Park DH, Appl. Biochem. Biotechnol., 161(1-8), 41 (2010)
- Scordia D, Cosentino SL, Jeffries TW, Biomass Bioenerg., 59, 540 (2013)
- Lee SB, Kim SK, Hong YK, Jeong GT, Algal Res., 13, 303 (2016)
- Akien GR, Qi L, Horvath IT, Chem. Commun., 48, 5850 (2012)
- Mija A, van der Waal JC, Pin JM, Guigo N, de Jong E, Constr. Build. Mater., 139, 594 (2017)
- Ya’aini N, Amin NAS, Endud S, Microporous Mesoporous Mater., 171, 14 (2013)
- Rasmussen H, Sorensen HR, Meyer AS, Carbohydr. Res., 385, 45 (2014)
- De S, Dutta S, Saha B, Green Chem., 13, 2859 (2011)
- Hansen TS, Mielby J, Riisager A, Green Chem., 13, 109 (2011)
- Hu X, Wu LP, Wang Y, Song Y, Mourant D, Gunawan R, Gholizadeh M, Li CZ, Bioresour. Technol., 133, 469 (2013)
- Yang Y, Hu CW, Abu-Omar MM, Bioresour. Technol., 116, 190 (2012)
- Kim DH, Lee SB, Kim SK, Park DH, Jeong GT, Bioenerg. Res., 9, 1155 (2016)
- Kim HS, Kim SK, Jeong GT, J. Ind. Eng. Chem., 63, 48 (2018)
- Kim HS, Park MR, Kim SK, Jeong GT, Korean J. Chem. Eng., 35(6), 1290 (2018)
- Park MR, Kim SK, Jeong GT, Algal Res., 31, 116 (2018)