화학공학소재연구정보센터
Clean Technology, Vol.24, No.4, 348-356, December, 2018
무작위 에칭 흑연 기공을 가지는 탄소기반 흡착제에 의한 산소, 질소 및 아르곤의 흡착 계산
Adsorption Calculation of Oxygen, Nitrogen and Argon in Carbon-Based Adsorbent with Randomly Etched Graphite Pores
E-mail:
초록
분자전산 모사 방법에 의하여 슬릿 기공과 무작위 에칭 흑연(randomly etched graphite, REG) 기공을 가지는 탄소계 흡착제에서 산소, 질소 그리고 아르곤에 대한 흡착 평형을 계산 하였다. 흡착량 계산에서 흡착제와 흡착질의 신뢰할 만한 모델은 공업적 흡착 분리 공정의 정확한 설계에 매우 중요하다. 5.6 A의 가장 작은 물리적 기공 크기에서 오직 산소만이 기공의 중심에 흡착하였으며, 5.9 A부터 질소와 아르곤이 흡착을 시작하였다. 균일한 표면을 가지는 슬릿기공이 결함 기공의 불용 부피와 접근이 불가능한 부피로 인하여 표면에 이질성을 가지는 REG 기공보다 더 높은 흡착 능력을 보였다. 탄소계 흡착제의 경우 질소보다 산소가 높은 흡착량을 보였으며, 기공이 큰 경우 산소와 아르곤의 흡착량은 동일함을 보였다. 298 K에서 흡착 등온선 계산으로부터 압력이 증가할수록 질소에 대한 산소의 흡착량의 비율이 높아짐을 보였다.
The adsorption equilibria of oxygen, nitrogen and argon on carbonaceous adsorbent with slit-shaped and randomly etched graphite (REG) pores were calculated by molecular simulation method. Reliable models of adsorbents and adsorbates for adsorption equilibria are important for the correct design of industrial adsorptive separation processes. At the smallest physical pore of 5.6 A, only oxygen molecules were accommodated at the center of the slit-shaped pore, and from 5.9 A nitrogen and argon molecules could be accommodated in the pores. Slit pores showed higher adsorption capacity compared with REG pores with same averaged reenterance pore size due to dead volume and inaccessible volume in defected pores. And it was shown the adsorption capacities of oxygen and argon was same in larger pore size. From calculated adsorption isotherms at 298 K it showed that the adsorption capacity ratio of oxygen to nitrogen is increased as pressure is increased.
  1. Yang RT, Gas Separation by Adsorption Processes, Butterworths, Stoneham (1987).
  2. Yang RT, Adsorbents: Fundamentals and Applications, John Wilet & Sons, Hoboken (2003).
  3. Barrer RM, Proc. Roy. Soc. A, 167, 392 (1938)
  4. Milton RM, “Molecular Sieve Adsorbents,” U.S. Patent No. 2,882,243 (1959).
  5. Guerin de Montgareuil P, Domine D, “Process for Separating a Binary Gaseous Mixture by Adsorption,” U.S. Patent No. 3,155,468 (1964).
  6. Chao CC, “Process for Separating Nitrogen from Mixtures Thereof with Less Polar Substances,” U.S. Patent No. 4,859,217 (1989).
  7. Notaro F, Ackley MW, Smolarek J, Chem. Eng., 106(4), 104 (1999)
  8. Suzuki, M, Carbon, 32, 577 (1994)
  9. Mayer TJ, “Activated Carbon Fibers,” Carbon Materials for Advanced Technologies, Pergamon, Oak Ridge (1999).
  10. Keller JU, Staudt R, Gas Adsorption Equilibria: Experimental Methods and Adsorptive Isotherms, Springer, New York (2005).
  11. Yang RT, Duan RZ, Carbon, 23(3), 325 (1985)
  12. Freeman JJ, Gimblett FGR, Sing KSW, Carbon, 27(1), 85 (1989)
  13. Oberlin A, Villey M, Combaz A, Carbon, 18(5), 347 (1980)
  14. Stoeckli HF, Carbon, 28, 1 (1990)
  15. Kaneko K, Cracknell RF, Nicholson D, Langmuir, 10(12), 4606 (1994)
  16. McEnaney B, Mays TJ, Chen XS, Fuel, 77(6), 557 (1998)
  17. Gusev VY, O'Brien JA, Langmuir, 14(21), 6328 (1998)
  18. Kim DK, Kum GH, Seo YG, Korean Chem. Eng. Res., 39(3), 307 (2001)
  19. Kumar A, Lobo RF, Wagner NJ, AIChE J., 57(6), 1496 (2011)
  20. Jepps OG, Bhatia SK, Searles DJ, J. Chem. Phys., 120(11), 5396 (2004)
  21. Seo YG, Kum GH, Seaton NA, J. Membr. Sci., 195(1), 65 (2002)
  22. Bojan mJ, Steele W, Carbon, 36, 1417 (1998)
  23. Bojan MJ, van Slooten R, Steele W, Sep. Sci. Technol., 27(14), 1837 (1992)
  24. Maddox MW, Quirke N, Gubbins KE, Mol. Simul., 19(5-6), 267 (1997)
  25. Seaton NA, Friedman SP, MacElroy JM, Murphy BJ, Langmuir, 13(7), 1199 (1997)
  26. Lucena SMP, Paiva CAS, silvino PFG, Azevedo DCS, Cavalcante CL, Carbon, 48(9), 2554 (2010)
  27. Kuchta B, Etters RD, Phys. Rev. B, 36, 3400 (1987)
  28. Potoff JJ, Siepmann JI, AIChE J., 47(7), 1676 (2001)
  29. Frenkel D, Smit B, Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, San Diego (2002).
  30. Allen MP, Tildesley DJ, Computer Simulation of Liquids, Clarendon Press, Oxford, UK (1986).
  31. Smith W, Finchan D, Mol. Simul., 10(1), 67 (1993)
  32. Steele WA, Surf. Sci., 36, 317 (1973)
  33. Hansen N, Agbor FAB, Keil FJ, Fluid Phase Equilib., 259(2), 180 (2007)
  34. Rowley LA, Nicholson D, Parsonage NG, J. Comput. Phys., 17, 401 (1975)
  35. Ravikovich PI, Vishnyyakov A, Neimark AV, Phys. Rev. E, 64, 011602 (2001)
  36. June RL, Bell AT, Theodoru DN, J. Phys. Chem., 94, 1508 (1990)
  37. Thomson KT, Gubbins KE, Langmuir, 16(13), 5761 (2000)
  38. Bhattacharya S, Gubbins KE, Langmuir, 22(18), 7726 (2006)
  39. Quirke N, Tennison SRR, Carbon, 34, 1281 (1996)
  40. Chen YD, Yang RT, Uawithya P, AIChE J., 40(40), 577 (1994)
  41. Park YJ, Lee SJ, Moon JH, Choi DK, Lee CH, J. Chem. Eng. Data, 51(3), 1001 (2006)