Applied Chemistry for Engineering, Vol.29, No.6, 772-781, December, 2018
범부채 뿌리 추출물 및 분획물의 항산화, 항균 및 세포 보호 효과
Antioxidant, Antimicrobial and Cytoprotective Effects of the Extract and Its Fraction Obtained from Rhizomes of Belamcanda chinensis (L.) DC
E-mail:
초록
본 연구에서는 범부채 뿌리 50% 에탄올 추출물 및 에틸아세테이트 분획물을 제조하고 이들의 항산화 및 항균 활성, 세포 보호 효능을 평가하였다. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) 자유라디칼 소거 활성(FSC50) 측정 결과, 50% 에탄올 추출물은 621.5 μg/mL, 에틸아세테이트 분획물은 253.0 μg/mL이었다. Luminol 발광법을 이용한 총 항산화능(OSC50)은 추출물과 분획물에서 각각 13.6 및 3.0 μg/mL이었다. 항균 활성 측정에서 Staphylococcus aureus 및 Candida albicans 에 대한 에틸아세테이트 분획물의 최소저해농도(minimum inhibitory concentration, MIC)는 각각 156 및 1,250 μg/mL으로 나타났으며, 화장품에 사용하는 기존 방부제인 methyl paraben보다 유사하거나 더 높은 활성을 보여주었다. 1O2로 유도된 세포 손상에 대한 보호 효과(τ50)에서 50% 에탄올 추출물은 4~64 μg/mL 농도 범위에서 농도 의존적으로 세포보호 활성을 나타냈다. 16 μg/mL 농도에서 50% 에탄올 추출물, 에틸아세테이트 분획물 및 (+)-α-tocopherol의 τ50은 각각 36.4, 45.0 및 45.8 min이었으며, 에틸아세테이트 분획물은 1O2로 유도된 세포 손상에서 (+)-α-tocopherol과 유사한 세포 보호 활성을 나타냈다. UVB로 유도된 HaCaT 세포 손상에서 에틸아세테이트 분획물은 8 μg/mL에서 세포 내활성산소종(reactive oxygen species, ROS)을 최대 45.9%까지 감소시켰다. 과산화수소로 유도된 HaCaT 세포 손상에서도 에틸아세테이트 분획물은 0.5~8.0 μg/mL에서 세포 생존율을 유의적으로 증가시켰다. 범부채 뿌리 에틸아세테이트 분획물의 성분 분석 결과, irisflorentin, irigenin, tectorigenin, resveratrol, iridin 및 tectoridin 등의 플라보노이드 및 폴리페놀성분이 확인되었다. 결론적으로 범부채 뿌리 추출물 및 분획물은 화장품의 천연 항산화 및 항균 소재로서 적용 가능성이 있음을 시사한다.
In this study, we investigated antioxidant, antimicrobial and cytoprotective effects of 50% ethanol extract and ethyl acetate fraction from rhizomes of Belamcanda chinensis (L.) DC. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activities (FSC50) of the 50% ethanol extract and ethyl acetate fraction were 621.5 and 253.0 μg/mL, respectively. Total antioxidant capacities (OSC50) of the extract and fraction were 13.6 and 3.0 μg/mL, respectively. Minimum inhibitory concentrations (MIC) of the ethyl acetate fraction for Staphylococcus aureus and Candida albicans were 156, 1,250 μg/mL, respectively, indicating similar or higher levels of those of using methyl paraben. Cytoprotective effects of the 50% ethanol extract against 1O2-induced cellular damage (τ50) showed in a dose dependent manner at 4 to 64 μg/mL. τ50 of the 50% ethanol extract, ethyl acetate fraction and (+)-α-tocopherol at 16 μg/mL were 36.4, 45.0 and 45.8 min respectively, and the ethyl acetate fraction showed cytoprotective effects similar to (+)-α-tocopherol. In ultraviolet B radiation-induced HaCaT cell damage, the ethyl acetate fraction decreased intracellular reactive oxygen species (ROS) up to 45.9% at 8 μg/mL. Also in H2O2-induced HaCaT cell damage, the ethyl acetate fraction significantly increased the cell viability at 0.5~8.0 μg/mL. As a result of chemical analyses of the ethyl acetate fraction, the presence of flavonoids and polyphenol such as irisflorentin, irigenin, tectorigenin, resveratrol, iridin and tectoridin were identified. In conclusion, the extract/fraction from rhizomes of B. chinensis can be applied as a natural antioxidant and antimicrobial material to cosmetics.
Keywords:Belamcanda chinensis (L.) DC;antioxidant;reactive oxygen species;antimicrobial effect;cytoprotective effect;flavonoid
- Farage MA, Miller KW, Elsner P, Maibach HI, Int. J. Cosmet. Sci., 30(2), 87 (2008)
- Farage MA, Miller KW, Cutan. Ocul. Toxicol., 26(4), 343 (2007)
- Herrling T, Jung K, Fuchs J, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 63(4), 840 (2006)
- Simon HU, Haj-Yehia A, Levi-Schaffer F, Apoptosis, 5(5), 415 (2000)
- Trouba KJ, Hamadeh HK, Amin RP, Germoled DR, Antioxid. Redox Signal., 4(4), 665 (2002)
- Apel K, Hirt H, Annu. Rev. Plant Biol., 55, 373 (2004)
- Park SH, Kim JM, Kim JH, Oh YS, Joo DH, Lee EY, Shin HS, Kim AR, Lee SL, Park SN, J. Soc. Cosmet. Sci. Korea, 43(4), 309 (2017)
- Oh SJ, Mo JH, Asian J. Beauty Cosmetol., 9(4), 1 (2011)
- Zhang Y, Yao G, Huang X, Wang X, Asian J. Tradit. Med., 12(5), 201 (2017)
- Zhang L, Wei K, Xu J, Yang D, Zhang C, Wang Z, Li M, J. Ethnopharmacol., 186, 1 (2016)
- Xin RH, Zheng JF, Cheng L, Peng WJ, Luo YJ, Afr. J. Tradit. Complement. Altern. Med., 12(6), 39 (2015)
- Wozniak D, Janda B, Kapusta I, Oleszek W, Matkowski A, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 696(2), 148 (2010)
- Wozniak D, Oszmianski J, Matkowski A, Acta Pol. Pharm., 63(3), 213 (2006)
- Liu M, Yang S, Jin L, Hu D, Xue W, Yang S, J. Med. Plant Res., 6(43), 5566 (2012)
- Oh KB, Kang HJ, Matsuoka H, Biosci. Biotechnol. Biochem., 65(4), 939 (2001)
- Lee JW, Lee C, Jin Q, Lee MS, Kim YS, Hong JT, Lee MK, Hwang BY, Arch. Pharm. Res., 38(6), 991 (2015)
- Ahn KS, Noh EJ, Cha KH, Kim YS, Lim SS, Shin KH, Jung SH, Life Sci., 78(20), 2336 (2006)
- Wang GH, Zou GX, You XM, Zhang Y, Jiang H, Li F, Li GX, Biomed. Res., 28(12), 5412 (2017)
- Miyazawa M, Sakano K, Nakamura SI, Shimamura H, Kosaka H, J. Oleo Sci., 50(7), 545 (2001)
- Liu M, Yang S, Jin L, Hu D, Wu Z, Yang S, Molecules, 17(5), 6156 (2012)
- Kim AR, Jung MC, Jeong HI, Song DG, Seo YB, Jeon YH, Park SH, Shin HS, Lee SL, Park SN, Appl. Chem. Eng., 29(2), 176 (2018)
- Lee YS, Yun ME, Lee YJ, Park YM, Lee SL, Park SN, Microbiol. Biotechnol. Lett., 46(1), 18 (2018)
- Li J, Li WZM, Huang W, Cheung AWH, Bi CWC, Duan R, Guo AJY, Dong TTX, Tsim KWK, J. Chromatogr. A, 1216(11), 2071 (2009)
- Xie GY, Zhu Y, Shu P, Qin XY, Wu G, Wang Q, Qin MJ, J. Pharm. Biomed. Anal., 98, 40 (2014)