화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.1, 60-68, January, 2019
폴리에테르설폰/다관능성 에폭시 블렌드의 경화거동 및 강인화 특성
Cure Behavior and Toughness Properties of Polyethersulfone/Multifunctional Epoxy Resin Blends
E-mail:
초록
본 연구에서는 triglycidyl p-aminophenol(TGAP)/diglycidylether of bisphenol F(DGEBF) 에폭시 수지의 polyethersulfone(PES) 첨가에 따른 경화 거동과 파괴인성을 연구하였다. 경화 거동은 DSC 분석에 의해 승온 및 등 온 조건에 따라 연구를 진행하였다. 승온분석에서는 Ozawa와 Kissinger법을 이용하여 다양한 승온속도에서 얻어진 발열피크로부터 활성화에너지를 도출하였다. 또한 등온분석에서는 TGAP/DGEBF 에폭시 블렌드의 자촉매 효과를 고려한 Kamal의 속도모델을 이용하여 분석을 진행하였다. TGAP/DGEBF 에폭시에 대한 PES 함량에 따른 블렌드의 인장과 굴곡특성 및 파괴인성을 분석하였으며, 파괴인성 시험 후 파단면의 표면형태학적 변화도 관찰하였다. 결과적으로, TGAP/DGEBF 에폭시에 대한 PES의 첨가는 경화도와 경화속도 및 활성화에너지에 큰 영향을 미치지 않았으나, 인장강도, 굴곡강도, 굴곡탄성률은 저하되었다. 반면, 파괴인성에서는 PES 함량이 증가함에 따라 임계응력 세기인자와 임계변형에너지방출률 모두 증가하였다.
The cure behaviors and toughness properties of triglycidyl p-aminophenol/bisphenol F diglycidylether resin system with 4, 4-diaminodiphenylsulfone hardener were studied with the inclusion of polyethersulfone (PES). The cure kinetics of epoxy blends were investigated in both dynamic and isothermal conditions by differential scanning calorimetry (DSC). In dynamic experiments, the activation energy was evaluated by Ozawa and Kissinger’s equations at different heating rates (2~40 °C/min). Isothermal DSC data at different temperatures (160~220 °C) are fitted to an autocatalytic Kamal kinetic model. The tensile, flexural, and fracture toughness of the epoxy blends were investigated by taking into account their morphological features, which were influenced by the PES contents. Consequently, the results obtained from cure behavior studies further indicated that the degree of cure, rate of cure, and activation energy of the epoxy resins were not largely affected by the PES inclusion, while fracture toughness values of them increased with the PES content.
  1. Huang GC, Lee JK, Polym. Korea, 35, 3 (2011)
  2. Eom SY, Seo SB, Lee KY, Polym. Korea, 37, 2 (2013)
  3. Park SJ, Jin JS, Lee JR, Pak PK, Polym. Korea, 24, 2 (2000)
  4. Scamporrino E, Mineo P, Scamporrino A, Dattilo S, Vitalini D, Alicata R, J. Polym. Sci. A: Polym. Chem., 47, 21 (2009)
  5. Kissinger HE, Anal. Chem., 29, 11 (1957)
  6. Ozawa T, J. Therm. Anal., 2, 3 (1970)
  7. Kamal MR, Polym. Eng. Sci., 13, 1 (1973)
  8. Keenan MR, J. Appl. Polym. Sci., 33, 5 (1987)
  9. Park SJ, Jeong HJ, Nah CW, Korean. Chem. Eng. Res., 41, 4 (2003)