Polymer(Korea), Vol.43, No.1, 69-76, January, 2019
이성분 리튬염을 포함하는 Semi-IPN 고분자 전해질의 합성과 전기화학적 특성
Synthesis of Semi-IPN Polymer Electrolytes Containing Binary Lithium Salt and Their Electrochemical Properties
E-mail:
초록
본 연구에서는 에틸렌옥사이드기를 가지는 poly(methylsiloxane-g-PEO)를 합성하고 lithium perchlorate(LiClO4), 혹은 LiClO4와 lithium methacrylate(BF3-LiMA)를 함께 사용한 고분자 전해질을 제조하였다. 자외선 경화 후 이온전 도도 측정결과 BF3-LiMA가 도입된 이성분 리튬염에서 2.63×10-5 S/cm의 높은 상온 이온전도도와 5 V 이하에서 상대적으로 더 우수한 전기화학적 안정성을 확보할 수 있었다. 또한 제조된 고분자 전해질을 LMO 전극에 함침 및 가교시켜 복합전극을 제작하였으며 리튬/전해질/복합전극으로 구성된 전지실험을 실시하였다. 그 결과 이성분 리튬염에서 산화전극의 높은 계면저항이 관찰됨에도 불구하고 단일성분 리튬염보다 우수한 수명특성을 확보할 수 있었다.
In this study, we have synthesized a poly(methylsiloxane-g-PEO) with ethylene oxide groups and prepared polymer electrolytes using lithium perchlorate (LiClO4) or LiClO4 with lithium methacrylate (BF3-LiMA). In the electrochemical measurement after UV curing of the polymer electrolyte, BF3-LiMA-introduced binary lithium salt had a high room temperature ionic conductivity of 2.63×10-5 S/cm and it was able to obtain relatively better electrochemical stability of 5 V. The prepared polymer electrolyte was then impregnated and crosslinked on the LMO electrode to fabricate a composite electrode, and a battery test consisting of a lithium/electrolyte/composite electrode was performed. As a result, although the high interface resistance of the oxidation electrode was observed in the binary lithium salt system, the capacity retention characteristic was better than that of the LiClO4 salt system.
- Sakuda A, Hayashi A, Tatsumisago M, J. Power Sources, 195(2), 599 (2010)
- Higa M, Yaguchi K, Kitani R, Electrochim. Acta, 55(4), 1380 (2010)
- Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J, Nano Energy, 33, 363 (2017)
- Li Z, Huang J, Liaw BY, Metzler V, Zhang JB, J. Power Sources, 254, 168 (2014)
- Pozyczka K, Marzantowicz M, Dygas JR, Krok F, Electrochim. Acta, 227, 127 (2017)
- Gomari S, Esfandeh M, Ghasemi I, Solid State Ion., 303, 37 (2017)
- Porcarelli L, Aboudzadeh MA, Rubatat L, Nair JR, Shaplov AS, Gerbaldi C, Mecerreyes D, J. Power Sources, 364, 191 (2017)
- Zhang YF, Chen YZ, Liu Y, Qin BS, Yang ZH, Sun YB, Zeng DL, Varzi A, Passerini S, Liu ZH, Cheng HS, J. Power Sources, 397, 79 (2018)
- Rohan R, Sun YB, Cai WW, Zhang YF, Pareek K, Xu GD, Cheng HS, Solid State Ion., 268, 294 (2014)
- Cowie JMG, Spence GH, Solid State Ion., 123(1-4), 233 (1999)
- Ferrari IV, Braglia M, Djenizian T, Knauth P, Di Vona ML, J. Power Sources, 353, 95 (2017)
- Chamaani A, Safa M, Chawla N, El-Zahab B, ACS Appl. Mater. Interfaces, 9, 33819 (2017)
- Kang WC, Park HG, Kim KC, Ryu SW, Electrochim. Acta, 54(19), 4540 (2009)
- Safa KD, Shahin T, Akbar H, J. Org. Chem., 694, 4107 (2009)
- Bruce P, “Electrical Measurement on Polymer Electrolytes”, New York, p 237 (1987).
- Krok F, Dygas JR, Misztal-Faraj B, Florjanczyk Z, Bzducha W, J. Power Sources, 81, 766 (1999)
- Qin BS, Liu ZH, Ding GL, Duan YL, Zhang CJ, Cui GL, Electrochim. Acta, 141, 167 (2014)