화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.2, 121-128, February, 2019
독립형 반고체 복합 전해질을 적용한 고온 수퍼커패시터
High Temperature Supercapacitor with Free Standing Quasi-solid Composite Electrolytes
E-mail:
Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At 175 °C, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.
  1. Simon P, Gogotsi Y, Nat. Mater., 7(11), 845 (2008)
  2. Zhang LL, Zhao XS, Chem. Soc. Rev., 38, 2520 (2009)
  3. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
  4. Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11 (2006)
  5. Wei L, Yushin G, Nano Energy, 1, 552 (2012)
  6. Vellacheri R, Al-Haddad A, Zhao H, Wang W, Wang C, Lei Y, Nano Energy, 8, 231 (2014)
  7. Miller JR, Simon P, Science, 321, 651 (2008)
  8. Borges RS, Reddy AM, Rodrigues MT, Gullapalli H, Balakrishnam K, Silva GG, Ajayan PM, Sci. Rep., 3, 2572 (2013)
  9. Hibino T, Kobayashi K, Nagao M, Kawasaki S, Sci. Rep., 5, 7903 (2014)
  10. Liu X Wen Z, Wu D, Wang H, Yang J, Wang Q, J. Mater. Chem. A, 2, 11569 (2014)
  11. Lin R, Tabernat PL, Fantin S, Presser V, Perez CR, Malbosc F, Rupesinghe NL, Teo KB, Gogotsi Y, Simon P, J. Phys. Chem. Lett., 2, 2396 (2011)
  12. Ahmad S, Deepa M, Agnihotry SA, Sol. Energy Mater. Sol. Cells, 92(2), 184 (2008)
  13. Ueno K, Inaba A, Kondoh M, Watanabe M, Langmuir, 24(10), 5253 (2008)
  14. Product information sheet on the fumed silica. The Sigmaaldrich on the Web. Retrieved December 1, 2005 from http://www.sigmaaldrich.com.
  15. Taberna PL, Simon P, Fauvarque JF, J. Electrochem. Soc., 150(3), A292 (2003)
  16. Liao Y, Rao M, Li W, Tan C, Yi J, Chen L, Electrochimica Acta, 54, 6396 (2009)
  17. Shen B, Lang J, Guo R, Zhang X, Yan X, ACS Appl. Mater. Interfaces, 7, 25378 (2015)
  18. Fu Y, Ma X, Yang Q, Zong X, Mater. Lett., 57, 1759 (2003)
  19. Lu CY, Hoang TKA, Doan TNL, Zhao HB, Pan R, Yang L, Guan WS, Chen P, Appl. Energy, 170, 58 (2016)
  20. Jung HY, Karimi MB, Hahm MG, Ajayan PM, Jung YJ, Sci. Rep., 2, 773 (2012)
  21. Jung SM, Mafra DL, Lin CT, Jung HY, Kong J, Nanoscale, 7, 4386 (2015)