Korean Journal of Materials Research, Vol.29, No.2, 121-128, February, 2019
독립형 반고체 복합 전해질을 적용한 고온 수퍼커패시터
High Temperature Supercapacitor with Free Standing Quasi-solid Composite Electrolytes
E-mail:
Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At 175 °C, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.
- Simon P, Gogotsi Y, Nat. Mater., 7(11), 845 (2008)
- Zhang LL, Zhao XS, Chem. Soc. Rev., 38, 2520 (2009)
- Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
- Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11 (2006)
- Wei L, Yushin G, Nano Energy, 1, 552 (2012)
- Vellacheri R, Al-Haddad A, Zhao H, Wang W, Wang C, Lei Y, Nano Energy, 8, 231 (2014)
- Miller JR, Simon P, Science, 321, 651 (2008)
- Borges RS, Reddy AM, Rodrigues MT, Gullapalli H, Balakrishnam K, Silva GG, Ajayan PM, Sci. Rep., 3, 2572 (2013)
- Hibino T, Kobayashi K, Nagao M, Kawasaki S, Sci. Rep., 5, 7903 (2014)
- Liu X Wen Z, Wu D, Wang H, Yang J, Wang Q, J. Mater. Chem. A, 2, 11569 (2014)
- Lin R, Tabernat PL, Fantin S, Presser V, Perez CR, Malbosc F, Rupesinghe NL, Teo KB, Gogotsi Y, Simon P, J. Phys. Chem. Lett., 2, 2396 (2011)
- Ahmad S, Deepa M, Agnihotry SA, Sol. Energy Mater. Sol. Cells, 92(2), 184 (2008)
- Ueno K, Inaba A, Kondoh M, Watanabe M, Langmuir, 24(10), 5253 (2008)
- Product information sheet on the fumed silica. The Sigmaaldrich on the Web. Retrieved December 1, 2005 from http://www.sigmaaldrich.com.
- Taberna PL, Simon P, Fauvarque JF, J. Electrochem. Soc., 150(3), A292 (2003)
- Liao Y, Rao M, Li W, Tan C, Yi J, Chen L, Electrochimica Acta, 54, 6396 (2009)
- Shen B, Lang J, Guo R, Zhang X, Yan X, ACS Appl. Mater. Interfaces, 7, 25378 (2015)
- Fu Y, Ma X, Yang Q, Zong X, Mater. Lett., 57, 1759 (2003)
- Lu CY, Hoang TKA, Doan TNL, Zhao HB, Pan R, Yang L, Guan WS, Chen P, Appl. Energy, 170, 58 (2016)
- Jung HY, Karimi MB, Hahm MG, Ajayan PM, Jung YJ, Sci. Rep., 2, 773 (2012)
- Jung SM, Mafra DL, Lin CT, Jung HY, Kong J, Nanoscale, 7, 4386 (2015)