화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.2, 261-267, March, 2019
위장관 흡수 억제용 스텐트 재료의 가속 노화시험에 대한 pH의 영향
Effect of pH on the Accelerated Aging Test of Gastrointestinal Absorption Inhibiting Stent Materials
E-mail:,
초록
연신 polytetrafluoroethylene(e-PTFE) 및 fluorinated ethylene propylene copolymer(FEP)와 같은 불소계 고분자와 실리콘 재료의 안정성을 비만 치료용 흡수 억제 스텐트의 바이패스 라이너로 평가하였다. 안정성 평가는 실제 스텐트의 바이패스 라이너가 접촉하는 위산과 담즙산 환경과 유사한 pH 조건에서 가속 노화실험을 통해 이루어졌다. 가속 노화실험 전후의 형태학적, 물리·화학적 변화는 주사전자현미경, 적외선분광분석, 인장시험 등을 통해서 확인하였다. 또한 담즙산 투과실험은 in vitro 시험이 비만 치료용 스텐트의 바이패스 라이너로 유용한지를 확인하기 위해 e-PTFE 시료를 사용하여 수행되었다.
The stability of silicone and fluoropolymer materials, such as expanded polytetrafluoroethylene (e-PTFE) and fluorinated ethylene propylene copolymer (FEP), was assessed as bypass liners of an absorption inhibition stent to treat obesity. The stability was evaluated by conducting an accelerated aging test in a pH condition similar to a stomach acid and bile acid environments in contact with the actual stent bypass liner. The changes in the morphology and properties (chemical and physical) after accelerated aging were analyzed via SEM, FTIR and UTM. In addition, a bile acid permeation experiment was carried out using e-PTFE to confirm that in vitro testing could be used as a bypass liner of the stent to treat obesity.
  1. World Health Organization (WHO), Obesity and overweight, 2015.
  2. Yazdi FT, Clee SM, Meyre D, PeerJ, 2015; 3:e856.DOI:10.7717/peerJ.856.
  3. Bleich S, Cutler D, Murray C, Adams A, Annu. Rev. Public Health, 29, 273 (2009)
  4. Foster GD, Wadden TA, Makris AP, Davidson D, Sanderson RS, Allison DB, Kessler A, Obes. Res., 11, 1168 (2003)
  5. Wolfe BM, Kvach E, Eckel RH, Circ. Res., 118, 1844 (2016)
  6. Haslam DW, James WP, Lancet, 366, 1197 (2005)
  7. Yanovski SZ, Yanovski JA, JAMA, 311, 74 (2014)
  8. Colquitt JL, Pickett K, Loveman E, Frampton GK, Cochrane DB Syst. Rev., 8, 1 (2014)
  9. Imaz I, Martinez-Cervell C, Garcia-Alvarez EE, Sendra-Gutierrez JM, Gonzalez-Enriquez J, Obes. Surg., 18, 841 (2008)
  10. Kushner RF, Prog. Cardiovasc. Dis., 56, 465 (2014)
  11. Wells J, Miller M, Perry B, Ewing JA, Hale AL, Scott JD, Am. Surg., 81, 812 (2015)
  12. Srivastava A, Niranjan A, J. Minim. Access Surg., 6, 91 (2010)
  13. https://www.nhlbi.nih.gov/health/health-topics/topics/stents.
  14. Sato KT, Takehana C, Semin. Intervent. Radiol., 24, 391 (2007)
  15. Koehestanie P, de Jonge C, Berends FJ, Janssen IM, Bouvy ND, Greve JW, Ann. Surg., 260, 984 (2014)
  16. Gupta N, Kavya MV, Singh YRG, Jyothi J, Barshilia HC, J. Appl. Phys., 114, 1 (2013)
  17. Park SC, Park NS, Kim DG, Nah JW, Jeen YT, Cho HJ, Kim ES, Keum B, Seo YS, Lee HS, Chun HJ, Um SH, Kim CD, Ryu HS, Polym. Korea, 38(3), 351 (2014)
  18. Majumder S, Birk J, Surg. Endosc., 27, 2305 (2013)
  19. Koehestanie P, Betzel B, Dogan K, Berends F, Janssen I, Aarts E, Groenen M, Wahab P, Surg. Endosc., 28, 325 (2014)
  20. Takeuchi M, Kuratani T, Miyagawa S, Shirakawa Y, et al., J. Thorac. Cardiovasc. Surg., 148, 4 (2014)
  21. Hukins DWL, Mahomed A, Kukureka SN, Med. Eng. Phys., 30, 10 (2008)
  22. Hemmerlich KJ, Med. Plast. Biomater., 5(4), 16 (1998)
  23. ASTM F1980-16, Standard guide for accelerated aging of sterile barrier systems for medical devices.
  24. Lv M, Zheng F, Wang Q, Wang T, Liang Y, Mater. Des., 85, 162 (2015)
  25. Johnson LM, Gao L, Shields CW IV, Smith M, Efimenko K, Cushing K, Genzer J, Lopez GP, J. Nanobiotechnol., 11, 1 (2013)
  26. Yakunin S, Fahrner M, Reisinger B, Itani H, Romanin C, Heitz J, J. Biomed. Mater. Res. Part B, 100, 170 (2012)
  27. Kitamura A, Kobayashi T, Satoh T, Koka M, Kamiya T, Suzuki A, Te T, Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 307, 614 (2013)