화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.78, 232-238, October, 2019
Towards high performance of supercapacitor: New approach to design 3 D architectured electrodes with bacteria
E-mail:
A novel approach of preparing high performance electrodes for supercapacitors was demonstrated by pyrolyzing the hierarchical composite prepared from organic waste and biological resources. Sponge waste was utilized as a carbon source for preparing the interconnected structured electrode materials with high porosity, and needle-like ZnO particles were directly grown on the sponge in order to effectively capture bacteria cells as well as improve the overall redox reactions. The bacteria (E. coli O157: H7) were isolated on a ZnO/sponge composite to endow electrochemically beneficial inherent nitrogen existing in bacteria, as well as to provide bio-templates with the aids of these structural and material benefits, the carbonized material prepared from the bacteria loaded on the ZnO/sponge composite showed a significantly enhanced specific capacitance of 133 F g-1 (at 0.2 A g-1) and an excellent cycle retention of 89% over long-term cycles (5000 cycles). Our strategy of utilizing recyclable and biomassderived materials not only can effectively improve the electrochemical performances of supercapacitors but also open an innovative way to address the systemic issues underlying the carbonaceous materials used in supercapacitors.
  1. Larcher D, Tarascon JM, Nat. Chem., 7(1), 19 (2015)
  2. Zhu YQ, Romain C, Williams CK, Nature, 540(7633), 354 (2016)
  3. Zhou M, Pu F, Wang Z, Guan S, Carbon, 68, 185 (2014)
  4. Fiset E, Rufford TE, Seredych M, Bandosz TJ, Hulicova-Jurcakova D, Carbon, 81, 239 (2015)
  5. Zhang ZJ, Dong C, Ding XY, Xia YK, J. Alloy. Compd., 636, 275 (2015)
  6. Ma G, Guo D, Sun K, Peng H, Yang Q, Zhou X, Zhao X, Lei Z, RSC Adv., 5(79), 64704 (2015)
  7. Elmouwahidi A, Bailon-Garcia E, Perez-Cadenas AF, Maldonado-Hodar FJ, Carrasco-Marin F, Electrochim. Acta, 229, 219 (2017)
  8. Sun X, Cheng P, Wang H, Xu H, Dang L, Liu Z, Lei Z, Carbon, 92, 1 (2015)
  9. Yang W, Dong Q, Liu S, Xie H, Liu L, Li J, Procedia Environ. Sci., 16, 167 (2012)
  10. Beveridge TJ, J. Bacteriol., 181(16), 4725 (1999)
  11. Scheffers DJ, Pinho MG, Microbiol. Mol. Biol. Rev., 69(4), 585 (2005)
  12. Augustyn V, Simon P, Dunn B, Energy Environm. Sci., 7(5), 1597 (2014)
  13. Salunkhe RR, Tang J, Kamachi Y, Nakato T, Kim JH, Yamauchi Y, ACS Nano, 9(6), 6288 (2015)
  14. Ramachandran R, Xuan W, Zhao C, Leng X, Sun D, Luo D, Wang F, RSC Adv., 8(7), 3462 (2018)
  15. Yong HS, Park HB, Jung JW, Jung CS, J. Ind. Eng. Chem., 76, 429 (2019)
  16. Yadav AA, Lokhande AC, Kim JH, Lokhande CD, J. Ind. Eng. Chem., 56, 90 (2017)
  17. Atalay F, Asma D, Kaya H, Ozbey E, Mater. Sci. Semicond. Process, 38, 314 (2015)
  18. Shim HW, Jin YH, Seo SD, Lee SH, Kim DW, ACS Nano, 5(1), 443 (2010)
  19. Guo Y, Chang B, Wen T, Zhao C, Yin H, Zhou Y, Wang Y, Yang B, Zhang S, RSC Adv., 6(23), 19394 (2016)
  20. Lim MA, Kim DH, Park CO, Lee YW, Han SW, Li Z, Williams RS, Park I, ACS Nano, 6(1), 598 (2011)
  21. Wang T, Song DF, Zhao H, Chen JY, Zhao CH, Chen LL, Chen WJ, Zhou JY, Xie EQ, J. Power Sources, 274, 709 (2015)
  22. Li Z, Han J, Fan L, Wang M, Tao S, Guo R, Chem. Commun., 51(15), 3053 (2015)
  23. Qi D, Liu Y, Liu Z, Zhang L, Chen X, Adv. Mater., 29(5), 160280 (2017)
  24. Hu WH, Liu YS, Chen T, Liu Y, Li CM, Adv. Mater., 27(1), 181 (2015)
  25. Hu W, Liu Y, Zhu Z, Yang H, Li CM, ACS Appl. Mater. Interfaces, 2(6), 1569 (2010)
  26. Kiran MG, Pakshirajan K, Das G, J. Hazard. Mater., 324, 62 (2017)
  27. Rubio C, Ott C, Amiel C, Dupont-Moral I, Travert J, Mariey L, J. Microbiol. Methods, 64(3), 287 (2006)
  28. Morales MV, Asedegbega-Nieto E, Iglesias-Juez A, Rodriguez-Ramos I, Guerrero-Ruiz A, ChemSusChem, 8(13), 2223 (2015)
  29. Suryavanshi U, Iijima T, Hayashi A, Hayashi Y, Tanemura M, Chem. Eng. J., 179, 388 (2012)
  30. Wang D, Wang K, Wu H, Luo Y, Sun L, Zhao Y, Wang J, Jia L, Jiang K, Li Q, Carbon, 132, 370 (2018)
  31. Gomez S, Rendtorff NM, Aglietti EF, Sakka Y, Suarez G, Chem. Phys. Lett., 689, 135 (2017)
  32. Gottenbos B, Grijpma DW, van der Mei HC, Feijen J, Busscher HJ, J. Antimicrob. Chemother, 48(1), 7 (2001)
  33. Halder S, Yadav KK, Sarkar R, Mukherjee S, Saha P, Haldar S, Karmakar S, Sen T, SpringerPlus, 4(1), 672 (2015)
  34. Huang KJ, Wang L, Zhang JZ, Xing K, J. Electroanal. Chem., 752, 33 (2015)
  35. Qi JL, Wang X, Lin JH, Zhang F, Feng JC, Fei WD, J. Mater. Chem. A, 3(23), 12396 (2015)
  36. Yan T, Li RY, Yang TT, Li ZJ, Electrochim. Acta, 152, 530 (2015)
  37. Farzana R, Rajarao R, Bhat BR, Sahajwalla V, J. Ind. Eng. Chem., 65, 387 (2018)
  38. Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS, Energy Environ. Sci., 5(7), 7936 (2012)
  39. Zhang Z, Wang L, Li Y, Wang Y, Zhang J, Guan G, Pan Z, Zheng G, Peng H, Adv. Eng. Mater., 7(5), 160181 (2017)
  40. Wang J, Huang R, Zhang Y, Diao J, Zhang J, Liu H, Su D, Carbon, 111, 519 (2017)
  41. Sevilla M, Valle-Vigon P, Fuertes AB, Adv. Funct. Mater., 21(14), 2781 (2011)
  42. Huang K, Chai SH, Mayes RT, Veith GM, Browning KL, Sakwa-Novak MA, Potter ME, Jones CW, Wu YT, Dai S, Chem. Commun., 51(97), 17261 (2015)
  43. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW, Nano Lett., 11(6), 2472 (2011)
  44. Li S, Yu C, Yang J, Zhao C, Fan X, Huang H, Han X, Wang J, He X, Qiu J, ChemElectroChem, 4(2), 369 (2017)
  45. Kan K, Wang L, Yu P, Jiang B, Shi K, Fu H, Nanoscale, 8(19), 10166 (2016)
  46. Walsh FC, Arenas LF, de Leon CP, J. Chem. Technol. Biotechnol., 93(11), 3073 (2018)
  47. Xiong G, He P, Lyu Z, Chen T, Huang B, Chen L, Fisher TS, Nat. Commun., 9(1), 790 (2018)
  48. da Silva SP, da Silva PRC, Urbano A, Scarminio J, Quim. Nova, 39(8), 901 (2016)
  49. Wang KP, Teng HS, J. Electrochem. Soc., 154(11), A993 (2007)