Journal of Industrial and Engineering Chemistry, Vol.79, 115-123, November, 2019
α-MnO2 nanorod/boron nitride nanoplatelet composites for high-performance nanoscale dielectric pseudocapacitor applications
E-mail:,
We demonstrate the synthesis of a composite of α-MnO2 nanorods and dielectric boron nitride nanoplatelets(BNNPs) as an electrode material for application in nanoscale dielectric pseudocapacitors. The optimize nanocomposite delivers a significantly high specific capacitance (890 F/g at 0.41 A/g), which is >72% of the theoretical specific capacitance of α-MnO2 at a mass loading of ca. 6 wt%. Pure BNNPs exhibit negligible charge storage capacity with a specific capacitance of 1.30 F/g at 0.024 A/g. The BNNPs increase the amount of K+ insertion/extraction and the conductivity of α-MnO2 nanorods by lowering the charge transfer resistance at the electrode-electrolyte interface. This is due to the electrical polarization of dielectric BNNPs during charging and discharging, which increases the rate and amount of K+ insertion or extraction induce by electrostatic force. The nanocomposite shows good capacity retention (94.12% after 2000 cycles) with high energy and power density. This research opens up a new avenue for the development of new types of nanoscale dielectric pseudocapacitors with high capacitance by exploring other suitable metal-oxides and nanoscale dielectric material composites.
Keywords:Dielectric pseudocapacitors;Intercalation/de-intercalation;α-MnO2 nanorods;Boron nitride nanoplatelets;High specific capacitance
- Bon CYJ, Mohammed L, Kim SJ, Manasi M, Isheunesu P, Lee KS, Ko JM, J. Ind. Eng. Chem., 68, 173 (2018)
- Barai HR, Rahman MM, Roy M, Barai P, Joo SW, Mater. Sci. Semicond. Process, 90, 245 (2019)
- Yong HS, Park HB, Jung JW, Jung CS, J. Ind. Eng. Chem., 76, 429 (2019)
- Barai HR, Rahman MM, Joo SW, Electrochim. Acta, 253, 563 (2017)
- Barai HR, Rahman MM, Joo SW, J. Power Sources, 372, 227 (2017)
- Ozcelik VO, Ciraci S, J. Phys. Chem. C, 117, 15327 (2013)
- Lee HU, Jin JH, Kim SW, J. Ind. Eng. Chem., 71, 184 (2019)
- Wang YG, Xia YY, Adv. Mater., 25(37), 5336 (2013)
- Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498 (2008)
- Sorel S, Khan U, Colemana JN, Appl. Phys. Lett., 101, 103106 (2012)
- Han F, Meng G, Zhou F, Song L, Li X, Hu X, Zhu X, Wu B, Wei B, Sci. Adv., 1, e15006 (2015)
- Ozcelik VO, Ciraci S, Phys. Rev. B, 91, 195445 (2015)
- Stengel M, Spaldin NA, Nature, 443, 679 (2006)
- Batra S, Cakmak M, Nanoscale, 7, 20571 (2015)
- Xie X, Zhou M, Lv L, Liu S, Shen J, Ploymer, 132, 193 (2017)
- Lee JY, Connor ST, Cui Y, Peumans P, Nano Lett., 8, 689 (2008)
- Zhang LL, Zhao XS, Chem. Soc. Rev., 38, 2520 (2009)
- Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y, Accounts Chem. Res., 49, 2796 (2016)
- Zhong Y, Xia X, Shi F, Zhan J, Tu J, Fan HJ, Adv. Sci., 3, 150028 (2016)
- Augustyn V, Simon P, Dunn B, Energy Environ. Sci., 7, 1597 (2014)
- Huang Y, Liang J, Chen Y, Small, 8, 1805 (2012)
- Tsai WY, Lin R, Murali S, Zhang LL, McDonough JK, Ruoff RS, Taberna PL, Gogotsi Y, Simon P, Nano Energy, 2, 403 (2013)
- Yan W, Kim JY, Xing W, Donavan KC, Ayvazian T, Penner RM, Chem. Mater., 24, 2382 (2012)
- El-Kady MF, Ihns M, Li M, Whang JY, Mousavi MF, Chaney L, Lech AT, Kaner RB, PNAS, 112, 4233 (2015)
- Zheng JP, Cygan PJ, Jow TR, J. Electrochem. Soc., 142(8), 2699 (1995)
- Xu C, Kang F, Li B, Du H, J. Mater. Res., 25, 1421 (2010)
- Devaraj S, Munichandraiah N, J. Phys. Chem. C, 12, 4406 (2008)
- Gambou-Boscaa A, Belanger D, J. Mater. Chem. A, 2, 6463 (2014)
- Ghodbane O, Pascal JL, Favier F, ACS Appl. Mater. Interfaces, 1, 1190 (2009)
- Adeel M, Rahman MM, Lee JJ, Biosens. Bioelectron., 126, 143 (2019)
- Li Q, Zhang G, Liu F, Han K, Gadinski MR, Xiong C, Wang Q, Energy Environ. Sci., 8, 922 (2015)
- Hattori Y, Taniguchi T, Watanabe K, Nagashio K, ACS Nano, 9, 916 (2015)
- Du M, Wu Y, Hao X, CrystEngComm, 15, 1782 (2013)
- Barai HR, Banerjee AN, Hamnabard N, Joo SW, RSC Adv., 6, 78887 (2016)
- Kumari S, Sharma OP, Gusain R, Mungse HP, Kukrety A, Kumar N, Sagimura H, Khatri OP, ACS Appl. Mater. Interfaces, 7, 3708 (2015)
- Luo J, Zhu HT, Fan HM, Liang JK, Shi HL, Rao GH, Li JB, Du ZM, Shen ZX, J. Phys. Chem. C, 112, 12594 (2008)
- Geick R, Perry CH, Rupprecht G, Phys. Rev., 146, 543 (1966)
- Gorbachev RV, Riaz I, Nair RR, Jalil R, Britnell L, Belle BD, Hill EW, Noveselov KS, Watanabe K, Taniguchi T, Small, 7, 465 (2011)
- Gao T, Fjellvag H, Norby P, Anal. Chim. Acta, 648, 235 (2009)
- Jalaly M, Gotor FJ, Semnan M, Sayagues MJ, Sci. Rep., 7, 3453 (2017)
- Lee SW, Kim J, Chen S, Hammond PT, Yang SH, ACS Nano, 7, 3889 (2010)
- Li QA, Liu JH, Zou JH, Chunder A, Chen YQ, Zhai L, J. Power Sources, 196(1), 565 (2011)
- Wang JG, Yang Y, Huang ZH, Kang F, J. Mater. Chem., 22, 16943 (2012)
- Dubal DP, Dhawale DS, Salunkhe RR, Lokhande CD, J. Electrochem. Soc., 157(7), A812 (2010)
- Alfaruqi MH, Gim J, Kim S, Song J, Jo J, Kim S, Mathew V, Kim J, J. Power Sources, 288, 320 (2015)
- Verma V, Jindal VK, Dharamvir K, Nanotechnology, 18, 435711 (2007)
- Jabeen N, Xia Q, Savilov SV, Aldoshin SM, Yu Y, Xia H, ACS Appl. Mater. Interfaces, 8, 33732 (2016)
- Wang J, Polleux J, Lim J, Dunn B, J. Phys. Chem. C, 111, 14925 (2007)
- Gund GS, Dubal DP, Chodankar NR, Cho JY, Gomez-Romero P, Park C, Lokhande CD, Sci. Rep., 5, 12454 (2014)
- Li LH, Santos EJG, Xing T, Cappelluti E, Roldan R, Chen Y, Watanabe K, Taniguchi T, Nano Lett., 15, 218 (2015)
- Ghosh S, Polaki SR, Sahoo G, Jin EM, Kamruddin M, Cho JS, Jeong SM, J. Ind. Eng. Chem., 72, 107 (2019)