화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.5, 591-596, October, 2019
암모늄 디나이트라마이드염의 합성 및 액상연료화 연구
Preparation of High Purity Ammonium Dinitramide and Its Liquid Mono-propellant
E-mail:
초록
친환경 대체연료물질로서 ammonium dinitramide (ADN, NH4N(NO2)2)는 상온에서 안전하고, 안정하지만 실제 적용을 위해서는 고순도가 요구된다. 소량의 불순물은 단일계 액상연료용 추력기 내 촉매의 분해반응을 억제하며, 비추력을 저하시키고, 노즐 막힘과 같은 부작용을 초래한다. 따라서 본 연구는 반복추출, 활성탄에 의한 흡착, 그리고 저온추출방법을 적용하여 합성한 ADN을 정제하였고, FT-IR, UV-Vis 및 IC 분석을 통하여 화학적인 순도를 평가하였으며, 최종순도로서 IC 분석기준으로 99.82%를 획득하였다. 또한, ADN을 주 산화제로 활용하는 액상연료를 제조하였으며, 최소 148 ℃에서 분해되는 단일계 추진제를 합성하였다. 그러나 상안정화를 위하여 우레아를 연료물질로 추가하였을 경우, 분해온도는 188 ℃까지 상승하였다.
A recently developed propellant, ammonium dinitramide (ADN, NH4N(NO2)2 is stable and safe at an ambient condition. However, it requires high purity for practical applications. A very little quantity of foreign impurities in ADN may cause clogging of thruster nozzles and catalyst poisoning for the use of a liquid propellant. Thus, several purification processes for precipitated ADN particles such as repetition extraction, activated carbon adsorption and low-temperature extraction were presented in this study. The purifying methods helped to improve the chemical purity as evaluated by FT-IR and UV-Vis spectroscopy in addition to ion chromatography (IC) analyses. Among the purification processes, adsorption was found to be the best, showing a final purity of 99.8% based on relative quantification by IC. Thermal analysis revealed an exothermic temperature of 148 ℃ for the synthesized liquid monopropellant, but rose to 188 ℃ when urea was added.
  1. Singh S, Srivastava P, Singh G, J. Ind. Eng. Chem., 71, 128 (2014)
  2. Zhao WY, Zhang TL, Zhang LN, Yang L, Zhou ZN, J. Ind. Eng. Chem., 38, 73 (2016)
  3. Gohardani AS, Stanojev J, Demairee A, Anflo K, Persson M, Wingborg N, Nilsson C, Prog. Aerospace Sciences, 71, 128 (2014)
  4. Vandel AP, Lobanova AA, Loginova VS, Russian J. Appl. Chem., 82, 1609 (2009)
  5. Jing L, You X, Huo J, Zhu M, Yao Z, Aerosol Sci. Technol., 69, 161 (2017)
  6. Kim WR, Kwon YJ, Jo YM, Park YC, J. Energetic Materials, 35, 44 (2017)
  7. Martin R, PhD Dissertation, Green propellants, Royal Institute of Technology, Stockholm, Sweden (2010).
  8. Jang HG, Sul MJ, Shim JS, Park YC, Cho SJ, J. Ind. Eng. Chem., 63, 237 (2018)
  9. Badgujar DM, Wagh RM, Pawar SJ, Sikder AK, PROPELLANT-EXPLOS-PYROTECH, 39(5), 658 (2014)
  10. Kim WR, Kwon YJ, Hwang SY, Jo YM, Korean J. Chem. Eng., 34(6), 1693 (2017)
  11. Jing L, You X, Hou J, Zhu M, Yao Z, Aerosol Sci. Technol., 69, 161 (2017)
  12. Langlet A, Ostmark H, Wingborg N, Method of preparing dinitramidic acid and salts thereof, US Patent 5976483A (1999).
  13. Latypov N, Langlet A, Method of producing dinitramide salts, WO Patent 1999046202 A1 (1999).
  14. Sangwal K, Additives and Crystallization Processes from Fundamentals to Applications, 1st ed., Wiley, Chichester, UK (2007).
  15. Kim WR, Kwon YJ, Adelodun AA, Jo YM, J. Ind. Eng. Chem., 53, 411 (2017)
  16. Fernandez-Gonzalez A, Mallada MT, Viesca JL, Gonzalez R, Badia R, Hernandez-Battez A, J. Ind. Eng. Chem., 56, 292 (2017)
  17. Agrawal JP, High Energy Materials: Propellants, Explosives and Pyrotechnics, 1st ed., Wiley, Weinheim, Germany (2010).
  18. Kim W, Kwon Y, Jo Y, Appl. Chem. Eng., 27(4), 397 (2016)
  19. Vorde C, Shifs H, Method of producing salts of dinitramidic acid, US Patent 7981393 B2 (2011).