Applied Chemistry for Engineering, Vol.30, No.5, 591-596, October, 2019
암모늄 디나이트라마이드염의 합성 및 액상연료화 연구
Preparation of High Purity Ammonium Dinitramide and Its Liquid Mono-propellant
E-mail:
초록
친환경 대체연료물질로서 ammonium dinitramide (ADN, NH4N(NO2)2)는 상온에서 안전하고, 안정하지만 실제 적용을 위해서는 고순도가 요구된다. 소량의 불순물은 단일계 액상연료용 추력기 내 촉매의 분해반응을 억제하며, 비추력을 저하시키고, 노즐 막힘과 같은 부작용을 초래한다. 따라서 본 연구는 반복추출, 활성탄에 의한 흡착, 그리고 저온추출방법을 적용하여 합성한 ADN을 정제하였고, FT-IR, UV-Vis 및 IC 분석을 통하여 화학적인 순도를 평가하였으며, 최종순도로서 IC 분석기준으로 99.82%를 획득하였다. 또한, ADN을 주 산화제로 활용하는 액상연료를 제조하였으며, 최소 148 ℃에서 분해되는 단일계 추진제를 합성하였다. 그러나 상안정화를 위하여 우레아를 연료물질로 추가하였을 경우, 분해온도는 188 ℃까지 상승하였다.
A recently developed propellant, ammonium dinitramide (ADN, NH4N(NO2)2 is stable and safe at an ambient condition. However, it requires high purity for practical applications. A very little quantity of foreign impurities in ADN may cause clogging of thruster nozzles and catalyst poisoning for the use of a liquid propellant. Thus, several purification processes for precipitated ADN particles such as repetition extraction, activated carbon adsorption and low-temperature extraction were presented in this study. The purifying methods helped to improve the chemical purity as evaluated by FT-IR and UV-Vis spectroscopy in addition to ion chromatography (IC) analyses. Among the purification processes, adsorption was found to be the best, showing a final purity of 99.8% based on relative quantification by IC. Thermal analysis revealed an exothermic temperature of 148 ℃ for the synthesized liquid monopropellant, but rose to 188 ℃ when urea was added.
- Singh S, Srivastava P, Singh G, J. Ind. Eng. Chem., 71, 128 (2014)
- Zhao WY, Zhang TL, Zhang LN, Yang L, Zhou ZN, J. Ind. Eng. Chem., 38, 73 (2016)
- Gohardani AS, Stanojev J, Demairee A, Anflo K, Persson M, Wingborg N, Nilsson C, Prog. Aerospace Sciences, 71, 128 (2014)
- Vandel AP, Lobanova AA, Loginova VS, Russian J. Appl. Chem., 82, 1609 (2009)
- Jing L, You X, Huo J, Zhu M, Yao Z, Aerosol Sci. Technol., 69, 161 (2017)
- Kim WR, Kwon YJ, Jo YM, Park YC, J. Energetic Materials, 35, 44 (2017)
- Martin R, PhD Dissertation, Green propellants, Royal Institute of Technology, Stockholm, Sweden (2010).
- Jang HG, Sul MJ, Shim JS, Park YC, Cho SJ, J. Ind. Eng. Chem., 63, 237 (2018)
- Badgujar DM, Wagh RM, Pawar SJ, Sikder AK, PROPELLANT-EXPLOS-PYROTECH, 39(5), 658 (2014)
- Kim WR, Kwon YJ, Hwang SY, Jo YM, Korean J. Chem. Eng., 34(6), 1693 (2017)
- Jing L, You X, Hou J, Zhu M, Yao Z, Aerosol Sci. Technol., 69, 161 (2017)
- Langlet A, Ostmark H, Wingborg N, Method of preparing dinitramidic acid and salts thereof, US Patent 5976483A (1999).
- Latypov N, Langlet A, Method of producing dinitramide salts, WO Patent 1999046202 A1 (1999).
- Sangwal K, Additives and Crystallization Processes from Fundamentals to Applications, 1st ed., Wiley, Chichester, UK (2007).
- Kim WR, Kwon YJ, Adelodun AA, Jo YM, J. Ind. Eng. Chem., 53, 411 (2017)
- Fernandez-Gonzalez A, Mallada MT, Viesca JL, Gonzalez R, Badia R, Hernandez-Battez A, J. Ind. Eng. Chem., 56, 292 (2017)
- Agrawal JP, High Energy Materials: Propellants, Explosives and Pyrotechnics, 1st ed., Wiley, Weinheim, Germany (2010).
- Kim W, Kwon Y, Jo Y, Appl. Chem. Eng., 27(4), 397 (2016)
- Vorde C, Shifs H, Method of producing salts of dinitramidic acid, US Patent 7981393 B2 (2011).