Korean Journal of Chemical Engineering, Vol.36, No.12, 2074-2084, December, 2019
Hydrodynamic modeling of the spiral-wound membrane module including the membrane curvature: reverse osmosis case study
E-mail:
This study presents an integrated analytical model for the hydrodynamic behavior of the spiral-wound membrane element considering the curvature of the flow feed and permeate channels. The new model introduces a set of closed-form expressions for the output parameters of the permeate flow rate, fluid recovery fraction, and the permeation flux, which can be a necessary tool for optimization and evaluation of the parameters involved in the problem. Accordingly, the results were set forth for a reverse osmosis water treatment SWM element. The difference in the output parameters for the solutions with flat and curved membranes was investigated, and the consequences of the common assumption of the flat-sheet membrane were examined mathematically. It was found that neglecting the membrane curvature implements a significant impact/error on the prediction of the permeate channel pressure and membrane width with maximum permeation rate, whereas its impacts on feed channel pressure and output parameters are insignificant, especially for the considered reverse osmosis case study. Also, the curvature effect on the solution can be magnified by three parameters of the membrane width: permeate channel permeability, and membrane resistance.
Keywords:Hydrodynamics;Curvature;Spiral-wound Membrane Element;Water Permeate Flow Rate;Fluid Recovery Fraction
- Homaeigohar S, Elbahri M, NPG Asia Mater., 9(8), e427 (2017)
- Elimelech M, Phillip WA, Science, 333(6043), 712 (2011)
- Haidari AH, Heijman SGJ, van der Meer WGJ, Sep. Purif. Technol., 192, 441 (2018)
- Abid HS, Johnson DJ, Hashaikeh R, Hilal N, Desalination, 420, 384 (2017)
- Bae C, Park K, Heo H, Yang DR, Korean J. Chem. Eng., 34(3), 844 (2017)
- Lin DJ, Ding ZW, Liu LY, Ma RY, Comput. Chem. Eng., 44, 20 (2012)
- Taherinejad M, Derakhshan S, Yavarinasab A, Desalination, 411, 59 (2017)
- Haidari AH, Heijman SGJ, van der Meer WGJ, Sep. Purif. Technol., 199, 9 (2018)
- Radu AI, van Steen MSH, Vrouwenvelder JS, van Loosdrecht MCM, Picioreanu C, Water Res., 64, 160 (2014)
- Hong SS, Ryoo W, Chun MS, Chung GY, Korean J. Chem. Eng., 32(7), 1249 (2015)
- Gu BR, Adjiman CS, Xu XY, J. Membr. Sci., 527, 78 (2017)
- Siddiqui A, Lehmann S, Haaksman V, Ogier J, Schellenberg C, van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS, Water Res., 119, 304 (2017)
- Koutsou CP, Karabelas AJ, Kostoglou M, Sep. Purif. Technol., 147, 90 (2015)
- Kostoglou M, Karabelas AJ, Ind. Eng. Chem. Res., 48(22), 10025 (2009)
- Kim DY, Gu B, Yang DR, Korean J. Chem. Eng., 30(9), 1691 (2013)
- Kavianipour O, Ingram GD, Vuthaluru HB, J. Membr. Sci., 526, 156 (2017)
- Li MH, Bui T, Chao S, Desalination, 397, 194 (2016)
- Ranade VV, Kumar A, J. Membr. Sci., 271(1-2), 1 (2006)
- Li YL, Tung KL, J. Membr. Sci., 319(1-2), 286 (2008)
- Li YL, Tung KL, Lu MY, Huang SH, J. Membr. Sci., 329(1-2), 106 (2009)
- Li YL, Tung KL, Chen YS, Hwang KJ, Desalination, 287, 200 (2012)
- Wardeh S, Morvan HP, Desalination Water Treatment, 1(1-3), 277 (2009)
- Tung KL, Teoh HC, Lee CW, Chen CH, Li YL, Lin YF, Chen CL, Huang MS, J. Membr. Sci., 495, 489 (2015)
- Karabelas AJ, Kostoglou M, Koutsou CP, Desalination, 356, 165 (2015)
- Taherinejad M, Gorman J, Sparrow E, Derakhshan S, J. Membr. Sci., 563, 2010 (2018)
- Koutsou CP, Yiantsios SG, Karabelas AJ, J. Membr. Sci., 291(1-2), 53 (2007)
- Sousa P, Soares A, Monteiro E, Rouboa A, Desalination, 349, 22 (2014)
- Kostoglou M, Karabelas AJ, Desalination, 316, 91 (2013)
- Minhas MB, Kim WS, Desalination Water Treatment, 54(9), 2343 (2014)
- Mane PP, Park PK, Hyung H, Brown JC, Kim JH, J. Membr. Sci., 338(1-2), 119 (2009)
- Boulahfa H, Belhamidi S, Elhannouni F, Taky M, El Fadil A, Elmidaoui A, J. Environ. Chem. Eng., 7(2), 102937 (2019)