화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.81, 415-426, January, 2020
Synthesis and application of novel hydroxylated thia-crown ethers as composite ionophores for selective recovery of Ag+ from aqueous sources
E-mail:,
Selective recovery of silver ions Ag+ has been a big challenge due to its difficult separation from complex aqueous feed streams. Herein, four novel highly selective 13- to 19-membered thia-crown ethers (TCEs) were successfully developed by intermolecular cyclization of S- and O-containing intermediates. The TCEs have reactive hydroxyl group(s) for coating on solid supports. To evaluate their ability to capture Ag+, the TCEs were coated on polypropylene (PP) membrane (TCE@PP) at high loading (~280 wt%) via wet-incipient technique with glutaraldehyde acetalization. Adsorption results of all TCE@PP reveal high Ag+ capacities with qe ~124-179 mg g 1, excellent Ag+ selectivities with Kd ~291-778 L g 1 and rapid uptake rate within 1 h. But DH19-TCE4 or 19TCE@PP is the most effective as it achieved 96% Ag+ complexation compared with others ~53-86% at feed Co = 1.5 mM. Density functional theory calculations reveal that DH19-TCE4 had the closest cavity size (Øc = 2.35 A) with Ag+ (ØAg+ = 2.30 A), the most negative binding energy (BE =-65.76 kcal mol-1), and the least cavity distortion during Ag+ complexation. All adsorbents are reusable and stable with consistent performance even after five cycles of adsorption/ desorption runs. Overall results demonstrate the effectiveness of the synthesis strategies for TCEs and their high potential as adsorbents, especially DH19-TCE4, for selective Ag+ recovery from aqueous sources.
  1. Garcia AM, Hunt AJ, Budarin VL, Parker HL, Shuttleworth PS, Ellis GJ, Clark JH, Green Chem., 17, 2146 (2015)
  2. Elshehy EA, Shenashen MA, El-Magied MOA, Tolan DA, El-Nahas AM, Halada K, Atia AA, El-Safty SA, Eur. J. Inorg. Chem., 41, 4823 (2017)
  3. Tickner J, Rajarao R, Lovric B, Ganly B, Sahajwalla V, J. Sustain. Metall., 2, 296 (2016)
  4. Hefne JA, Mekhemer WK, Alandis SM, Aldayel OA, Alajyan T, JKAU Sci., 22, 155 (2010)
  5. Jeon C, J. Ind. Eng. Chem., 53, 261 (2017)
  6. Hasan R, Chong CC, Bukhari SN, Jusoh R, Setiabudi HD, J. Ind. Eng. Chem., 75, 262 (2019)
  7. Torrejos REC, Nisola GM, Song HS, Limjuco LA, Lawagon CP, Parohinog KJ, Koo S, Han JW, Chung WJ, Chem. Eng. J., 326, 921 (2017)
  8. Pedersen CJ, J. Am. Chem. Soc., 89, 7017 (1967)
  9. Hong MZ, Wang X, You WJ, Zhuang ZY, Yu Y, Chem. Eng. J., 313, 1278 (2017)
  10. Gutsche CD, Dhawan B, No KH, Muthukrishnan R, J. Am. Chem. Soc., 103, 3782 (1981)
  11. Morel-Desrosiers N, Morel JP, J. Am. Chem. Soc., 103, 4743 (1981)
  12. Jamieson EMG, Modicom F, Goldup SM, Chem. Soc. Rev., 47, 5266 (2018)
  13. Pearson RG, J. Am. Chem. Soc., 85, 3533 (1963)
  14. Krylova K, Jackson KD, Vroman JA, Grall AJ, Snow MR, Ochrymowycz LA, Rorabacher DB, Inorg. Chem., 36(27), 6216 (1997)
  15. Siswanta D, Nagatsuka K, Yamada H, Kumakura K, Hisamoto H, Shichi Y, Toshima K, Suzuki K, Anal. Chem., 68, 4166 (1996)
  16. Craig AS, Kataky R, Matthews RC, Parker D, J. Chem. Soc. Perkin Trans., 2, 1523 (1990)
  17. Tu C, Liu D, Surowiec K, Purkiss DW, Bartsch RA, Org. Biomol. Chem., 4, 2938 (2006)
  18. Garcia-Simon C, Costas M, Ribas X, Chem. Soc. Rev., 45, 40 (2016)
  19. Heo GS, Bartsch RA, Schlobohm LL, Lee JG, J. Org. Chem., 46, 3574 (1981)
  20. Destaye AG, Lin CK, Lee CK, ACS Appl. Mater. Interfaces, 5, 4745 (2013)
  21. Torrejos REC, Nisola GM, Park MJ, Shon HK, Seo JG, Koo S, Chung WJ, Chem. Eng. J., 264, 89 (2015)
  22. Wei-chun GT, Mao CH, Fine Chem. Intermed., 40, 12 (2010)
  23. Gurung M, Adhikari BB, Kawakita H, Ohto K, Inoue K, Alam S, Hydrometallurgy, 133, 84 (2013)
  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al., Gaussian Inc., Wallingford CT, 2013.
  25. Khazaei A, Borazjani MK, Moradian KM, J. Chem. Sci., 124, 1127 (2012)
  26. Torrejos REC, Nisola GM, Song HS, Han JW, Lawagon CP, Seo JG, Koo S, Kim H, Chung WJ, Hydrometallurgy, 164, 362 (2016)
  27. Pedersen CJ, Frensdorff HJ, Angew. Chem.-Int. Edit., 11, 16 (1972)
  28. Steinmetz, The Broad Scope of Cesium Salts in Organic Chemistry, Chemetall GmbH, Frankfurt, Germany. http://old.inno-chem.com.cn/pdf/4.pdf. (Accessed 28 June 2019).
  29. Nagai H, Suzaki Y, Osakada K, Eur. J. Inorg. Chem., 26, 4376 (2014)
  30. Chen TH, Schneemann A, Fischer RA, Cohen SM, Dalton Trans., 45, 3063 (2016)
  31. Edema’ JJH, Buter J, Stock HT, Kellogg RM, Tetrahedron, 48, 8065 (1992)
  32. Litvinova VV, Anisimov AV, Chem. Heterocycl. Compd., 35, 1385 (1999)
  33. Nisola CM, Cho E, Beltran AB, Han M, Kim Y, Chung WJ, Chemosphere, 80, 894 (2010)
  34. Limjuco LA, Nisola GM, Torrejos REC, Han JW, Song HS, Parohinog KJ, Koo S, Lee SP, Chung WJ, ACS Appl. Mater. Interfaces, 9, 42862 (2017)
  35. Finegan DP, Cooper SJ, Tjaden B, Taiwo OO, Gelb J, Hinds G, Brett DJL, Shearing PR, J. Power Sources, 333, 184 (2016)
  36. Zhong S, Wuhan J, Univ. Technol. Mater. Sci. Ed., 27, 301 (2012)
  37. Li XG, Ma XL, Sun J, Huang MR, Langmuir, 25(3), 1675 (2009)
  38. Wang S, Li H, Chen X, Yang M, Qi Y, J. Environ. Sci., 24, 2166 (2012)
  39. Hou HB, Yu DM, Hu GH, Langmuir, 31(4), 1376 (2015)
  40. Yirikoglu H, Gulfen M, Sep. Sci. Technol., 43(2), 376 (2008)
  41. Torres E, Mata YN, Blazquez AL, Munoz JA, Gonzalez F, Ballester A, Langmuir, 21(17), 7951 (2005)
  42. Jeon C, Korean J. Chem. Eng., 34(2), 384 (2017)
  43. Shannon RD, Acta Crystallogr. Sect. A, 32, 751 (1976)
  44. Rulisek L, Havlas Z, J. Phys. Chem. A, 106, 3855 (2002)
  45. Parr RG, Pearson RG, J. Am. Chem. Soc., 105, 7512 (1983)
  46. Marcus Y, J. Chem. Soc.-Faraday Trans., 87, 2995 (1991)
  47. Zhang S, Ao F, Wang Y, Zhao J, Ji Y, Chen S, J. Renew. Mater., 6, 102 (2018)
  48. Khan SB, Alamry KA, Marwani HM, Asiri AM, Rahman MM, Composites B, 50, 253 (2013)
  49. Khan SB, Marwani HM, Seo J, Bakhsh EM, Akhtar K, Kim D, Asiri AM, Bull. Mat. Sci., 38, 327 (2015)
  50. Li XG, Feng H, Huang MR, Chem. Eur. J., 15, 4573 (2009)