화학공학소재연구정보센터
Clean Technology, Vol.25, No.4, 311-315, December, 2019
슬래그 내 양이온 추출 및 불순물 분리 연구
A Study on Cation Extraction and Impurity Separation in Slag
E-mail:,
초록
제철산업에서 발생하는 슬래그의 자원화를 위하여 슬래그 내 양이온 추출 및 불순물 분리 연구를 수행하였다. 두 종류(Slag-A, B)의 슬래그를 사용하였으며, XRD 및 XRF 분석을 통해 30 ~ 40%의 Ca2+와 함께 Fe3+ (20 ~ 30%), Si4+ (15%), Al3+(10%), Mn2+ (7%), Mg2+ (3 ~ 5%), 등 이온으로 구성되어 있음을 확인하였다. 2 M의 HCl을 추출용제로 사용하여 S/L ratio 별로 슬래그 주입하였으며, 추출액의 ICP 분석을 통해 S/L ratio가 높아짐에 따라 Ca2+ 추출량이 증가하는 것을 확인하였다. Ca2+ 추출 시 최적 S/L ratio는 0.1이며 Ca2+ 추출량은 8,940 (Slag-A), 10,690 (Slag-B) mg L-1로 나타났다. 하지만 추출액은 강산성(< pH 1)을 띠었으며 Ca2+ 이외에도 타이온(불순물)이 추출되었다. 슬래그를 고부가가치의 자원으로 이용하기 위해 Ca2+의 순도를 증진시키고자 pH-swing을 진행하였다. pH가 증가함에 따라 불순물이 침전되었으나 일정 pH 이상에서 Ca2+의 침전량이 급증 하였다. pH-swing을 통해 불순물을 분리하고 Ca2+의 선택도를 증진시킬 수 있음을 확인하였으며 pH 10.5 조건에서 Ca2+ 선택도는 99% 이상으로 나타났다. Ca2+가 선택적으로 용해되어 있는 수용액은 탄산화 공정에 적용되어 CO2를 저감하고 탄산칼슘을 생산할 수 있을 것으로 기대된다.
The cation extraction and impurity separation were studied in order to investigate the recyclability of a slag produced from the steel refinery industry. Two types of slag (Slag-A, B) were collected and characterized in this study. The initial characterization by X-ray diffraction (XRD) and X-ray fluorescence (XRF) confirmed the existence of various kinds of ions in the slag such as Ca2+ (30 ~ 40%), Fe3+ (20 ~ 30%), Si4+ (15%), Al3+ (10%), Mn2+ (7%), and Mg2+ (3 ~ 5%). Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis on the extracted slag using 2 M HCl as a solvent indicated that a higher concentration of Ca2+ was extracted as the S/L ratio was increased. The Ca2+ extraction concentration were found to be 8,940 mg L-1 (Slag-A) and 10,690 (Slag-B) mg L-1 when the S/L ratio for Ca2+ extraction was 0.1. However, the extract was strongly acidic ( < pH 1) at 0.1 S/L. Also the other ions (impurities) were extracted simultaneously in addition to Ca2+. To increase the purity of Ca2+ in order to transform the slag to a high value resource, a pH-swing was conducted. The impurities tended to precipitate at higher rate as the pH was increased. Notably, the Ca2+ rapidly precipitated above a certain pH and at a pH of 10.5, while the selectivity of Ca2+ was over 99%. It is expected that the aqueous solution in which high contents of Ca2+ was selectively dissolved in this study would be suitable for the carbonation process for reducing CO2 and for the production of calcium carbonate.
  1. Ryu KW, Choi SH, Econ. Environ. Geol., 50(1), 27 (2017)
  2. Lee SM, Kim YJ, Choi CY, Lee JY, J. Korean Soc. Urban Environ., 18(3), 303 (2018)
  3. Korea Meteorological Administration, Climate Change Information Center, Report of Global Atmosphere Watch 2013, Report No. 278 (2014).
  4. Intergovernmental Panel on Climate Change, Carbon Dioxide Capture and Storage, IPCC Special Report, Cambridge University Press (2005).
  5. Cho BS, Lee HH, Kim GY, Magazine of RCR, 7(3), 9 (2012)
  6. Yoo KS, Appl. Chem. Eng., 18(3), 20 (2015)
  7. Choi JS, Architecture, 56(8), 18 (2012)
  8. Lee SM, Kim YJ, Kim JM, Lee CH, Jeon JK, J. Korean Soc. Urban Environ., 17(1), 65 (2017)
  9. Son M, Kim G, Han K, Lee MW, Lim JT, Korean Chem. Eng. Res., 55(2), 141 (2017)
  10. Mattila HP, University of Abo Akademi, Turku (2014).
  11. Han KW, Kim GH, Son MA, Lee MW, Korean Soc. Energy, 10, 28 (2016)
  12. Lee SW, Won HI, Choi BY, Chae SC, Bang JH, Park KG, J. Miner. Soc. Korea, 30(4), 205 (2017)
  13. Baek JY, Jo YU, Lee JH, Jeong HI, Choi S, Roh Y, J. Geol. Soc. Korea, 10, 271 (2015)
  14. Lee HH, Kim KW, Hong SC, Appl. Chem. Eng., 24(5), 494 (2013)
  15. Lee YH, Lee SH, Hwang IH, Choi SY, Lee SM, Kim SS, Appl. Chem. Eng., 29(1), 43 (2018)
  16. Youn MH, Park KT, Lee YH, Kang SP, Lee SM, Kim SS, Kim YE, Ko YN, Jeong SK, Lee WH, J. CO2 Util., 34, 325 (2019)
  17. Lee YH, Han DH, Lee SM, Eom HK, Kim SS, Appl. Chem. Eng., 30(1), 34 (2019)