Korean Chemical Engineering Research, Vol.58, No.2, 293-300, April, 2020
Ferric chloride를 이용한 Eucheuma spinosum으로부터 플렛폼 케미컬의 생산
Conversion of Red-macroalgae Eucheuma spinosum to Platform Chemicals Under Ferric Chloride-catalyzed Hydrothermal Reaction
E-mail:
초록
홍조류인 Eucheuma spinosum은 카라기난을 주된 다당으로 함유하고 있으며 Indonesia, Malaysia, Philippines, China, Tanzania 등지에서 상업적으로 생산되고 있다. 본 연구에서는 E. spinosum을 대상으로 FeCl3-촉매 수열반응을 통하여당과 화학중간체(5-HMF, levulinic acid, formic acid)로 전환하고자 하였다. 통계적 실험법(3-수준-3-인자의 Box-Behnken design)을 적용하여 반응인자(반응온도, 촉매농도, 반응시간)의 최적화와 영향을 평가하였다. 최적화 결과, 5-HMF의 농도는 160 °C, 0.4M FeCl3, 10 min에서 2.96 g/L가 생성되었다. Levulinic acid와 formic acid의 최적 조건은 200 °C, 0.6M FeCl3, 30 min으로 결정되었고, 농도는 각각 4.26 g/L와 3.77 g/L이었다.
Eucheuma spinosum, red macro-algae, contains carrageenan as the major polysaccharide and is commercially produced in Indonesia, Malaysia, Philippines, China and Tanzania. In this study, E. spinosum was converted to sugar and platform chemicals (5-HMF, levulinic acid, formic acid) via FeCl3-catalytic hydrothermal reaction. In addition, statistical methodology (3-level 3-factor Box-Behnken design) was applied to optimize and evaluate the effects of reaction factors (reaction temperature, catalyst concentration and reaction time). As a result of optimization, the concentration of 5-HMF was obtained to be 2.96 g/L at 160 °C, 0.4 M FeCl3 and 10 min. Optimal conditions of levulinic and formic acids were determined at 200 °C, 0.6M FeCl3 and 30 min, and the concentrations were obtained to be 4.26 g/L and 3.77 g/L, respectively.
- Demirbas A, Prog. Energy Combust. Sci., 33(1), 1 (2007)
- Kamm B, Gruber PR, Kamm M, Biorefineries - Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim(2006).
- van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499 (2013)
- Chheda JN, Roman-Leshkov Y, Dumesic JA, Green Chem., 9, 342 (2007)
- Kim YW, Shin HJ, Korean J. Chem. Eng., 34(12), 3163 (2017)
- Siripong P, Doungporn P, Yoo HY, Kim SW, Korean J. Chem. Eng., 35(12), 2413 (2018)
- Jeong GT, Park DH, Appl. Biochem. Biotechnol., 161(1-8), 41 (2010)
- Jeong GT, Park DH, KSBB Journal, 26, 341 (2011)
- Jeong GT, Kim SK, Park DH, Bioresour. Technol., 181, 1 (2015)
- Park MR, Kim SK, Jeong GT, Algal Res., 31, 116 (2018)
- Lee SB, Kim SK, Hong YK, Jeong GT, Algal Res., 13, 303 (2016)
- Kim DH, Lee SB, Kim SK, Park DH, Bioenerg. Res., 9, 1155 (2016)
- Ra CH, Jung JH, Sunwoo IY, Kang CH, Jeong GT, Kim SK, J. Microbiol. Biotechnol., 25, 856 (2015)
- Kim MJ, Kim JS, Ra CH, Kim SK, KSBB Journal, 28(5), 315 (2013)
- Zhang HD, Ye GY, Wei YT, Li X, Zhang AP, Xie J, Bioresour. Technol., 229, 96 (2017)
- Zheng XJ, Zhi ZH, Gu XC, Li XY, Zhang R, Lu XB, Fuel, 187, 261 (2017)
- The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL), Results of screening for potential candidates from sugars and synthesis gas. http://www.osti.gov/bridge(2004).
- Kim HS, Jeong GT, Korean J. Chem. Eng., 35(11), 2232 (2018)
- Kim HS, Park MR, Kim SK, Jeong GT, Korean J. Chem. Eng., 35(6), 1290 (2018)
- Chemical Economics Handbook, 2016. Formic acid. https://www.ihs.com/products/formic-acid-chemical-economics-handbook.html. (Accessed 07 Feb. 2020).
- Zhou D, Hou Q, Liu W, Ren X, J. Ind. Eng. Chem., 47, 281 (2017)
- Joo F, ChemSusChem, 1(10), 805 (2008)
- Banerji A, Balakrishnan M, Kishore VVN, Appl. Energy, 104, 197 (2013)
- Estrada-Martinez R, Favela-Torres E, Soto-Cruz NO, Escalona-Buendia HB, Saucedo-Castaneda G, Biotechnol. Bioproc. E, 24(2), 401 (2019)
- Park MR, Kim SK, Jeong GT, Biotechnol. Bioproc. E., 23(3), 302 (2018)
- Jeong GT, Korean J. Microbiol. Biotechnol., 42(2), 177 (2014)