화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.87, 1-17, July, 2020
Enhancing gas.liquid volumetric mass transfer coefficient
E-mail:,
Methane-based biorefineries for biofuel production by microorganisms has gained interest due to the worldwide development of shale gas as an alternative source for fossil fuels. For the practical application of biological conversion process to industrial scale, enhancement of the gas.liquid volumetric mass transfer coefficient (kLa) in a gas diffusing system is crucial. This review article provides an overview of the developments on gas.liquid volumetric mass transfer enhancement through increasing the gas. liquid mass transfer coefficient term ‘kL’ and/or increasing the gas.liquid interfacial area term ‘a’. Two major enhancement methods which are summarized and discussed here include the most recent accomplishments in gas.liquid mass transfer engineering of gas diffusing systems. The most up-to-date mechanical modification of reactor and additive employment rationales and discussions providing a strong understanding of gas.liquid volumetric mass transfer relationships are presented. Thus, this review is expected to inspire new research for future developments and applications in gas.liquid mass transfer engineering for gas diffusing systems.
  1. Burt E, Orris P, Buchanan S, Scientific Evidence of Health Effects from Coal Use in Energy Generation, School of Public Health, University of Illinois and Health Care Without Harm, Chicago and Washington, 2013.
  2. National Aeronautics and Space Administration (NASA). http://www.giss.nasa.gov/research/briefs/kharecha_02/, 2013. (Accessed 28 January 2020).
  3. Kabir E, Kumar P, Kumar S, Adelodun AA, Kim KH, Renew. Sust. Energ. Rev., 82, 894 (2018)
  4. Perera FP, Environ. Health Perspect., 125, 141 (2016)
  5. Gregg JS, Andres RJ, Marland G, Geophys. Res. Lett., 35, L08806 (2008)
  6. Majsztrik PW, Mechanical and Transport Properties of Nafion for PEM Fuel Cells: Temperature and Hydration Effects, Princeton University, Princeton, NJ, 2008.
  7. Abas N, Kalair A, Khan N, Futures, 69, 31 (2015)
  8. McKendry P, Bioresour. Technol., 83(1), 37 (2002)
  9. Mohammadi M, Najafpour GD, Younsesi H, Lahijani P, Uzir MH, Mohamed AR, Renew. Sust. Energ. Rev., 15, 4255 (2011)
  10. Munasinghe PC, Khanal SK, Bioresour. Technol., 101(13), 5013 (2010)
  11. Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT, Biotechnol. Adv., 32, 596 (2014)
  12. Ahmed A, Lewis RS, Biotechnol. Bioeng., 97(5), 1080 (2007)
  13. Radler M, Oil Gas J., 109(10), 26 (2011)
  14. Kuuskraa V, Stevens SH, Moodhe KD, Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States, US Energy Information Administration, US Department of Energy, 2013.
  15. Jinchuan Z, Zhijun J, Mingsheng Y, Nat. Gas Ind. B, 24, 15 (2004)
  16. Chidambarampadmavathy K, Karthikeyan OP, Heimann K, Eng. Life Sci., 15, 387 (2015)
  17. Wasmus S, Kuver A, J. Electroanal. Chem., 461(1-2), 14 (1999)
  18. Yola ML, Eren T, Atar N, Saral H, Ermis I, Electroanalysis, 28, 570 (2016)
  19. Ryu JK, Seo JY, Choi BN, Kim WJ, Chung CH, J. Ind. Eng. Chem., 73, 254 (2019)
  20. Olah GA, Angew. Chem.-Int. Edit., 44, 2636 (2005)
  21. Pellegrini LA, Soave G, Gamba S, Lange S, Appl. Energy, 88(12), 4891 (2011)
  22. Lee SU, Lee YJ, Kim JR, Jeong KE, Jeong SY, J. Ind. Eng. Chem., 79, 443 (2019)
  23. Stone KA, Hilliard MV, He QP, Wang J, Biochem. Eng. J., 128, 83 (2017)
  24. Ge X, Yang L, Sheets JP, Yu Z, Li Y, Biotechnol. Adv., 32, 1460 (2014)
  25. Naik SN, Goud VV, Rout PK, Dalai AK, Renew. Sust. Energ. Rev., 14, 578 (2010)
  26. Durre P, Eikmanns BJ, Curr. Opin. Biotechnol., 35, 63 (2015)
  27. Haynes CA, Gonzalez R, Nat. Chem. Biol., 10, 331 (2014)
  28. Park D, Lee J, Korean J. Chem. Eng., 30(5), 977 (2013)
  29. Strong P, Xie S, Clarke WP, Environ. Sci. Technol., 49, 4001 (2015)
  30. Duan Z, Mao S, Geochim. Cosmochim. Acta, 70, 3369 (2006)
  31. Chapoy AA, Mohammadi AH, Richon D, Tohidi B, Fluid Phase Equilib., 220, 111 (2004)
  32. Arjunwadkar SJ, Sarvanan K, Kulkarni PR, Pandit AB, Biochem. Eng., 1, 99 (1998)
  33. Ungerman AJ, Heindel TJ, Biotechnol. Prog., 23(3), 613 (2007)
  34. Beenackers A, Van Swaaij W, Chem. Eng. Sci., 48, 3109 (1993)
  35. Painmanakul P, Wachirasak J, Jamnongwong M, Hebrard G, Eng. J., 13, 13 (2009)
  36. Zednikova M, Orvlho S, Fialova M, Ruzicka MC, Chemengineering, 2, 19 (2018)
  37. Versteeg GF, Blauwhoff PMM, van Swaaij WPM, Chem. Eng. Sci., 42, 1103 (1987)
  38. Kadic E, Heindel TJ, An Introduction to Bioreactor Hydrodynamics and Gas. liquid Mass Transfer, John Wiley & Sons, 2014.
  39. Akita K, Yoshida F, Ind. Eng. Chem. Proc. Des. Dev., 13, 84 (1974)
  40. Ozbek B, Gayik S, Process Biochem., 36(8-9), 729 (2001)
  41. Puthli MS, Rathod VK, Pandit AB, Biochem. Eng., 23, 25 (2005)
  42. Fadavi A, Chisti Y, Chem. Eng. J., 112(1-3), 73 (2005)
  43. Karimi A, Golbabaei F, Mehrnia MF, Neghab M, Mohammad K, Nikpey A, Pourmand MR, Iran. J. Environ. Health, 10, 6 (2013)
  44. Ramezani M, Kong B, Gao X, Olsen MG, Vigil RD, Chem. Eng. J., 279, 286 (2015)
  45. Lee J, Yasin M, Park S, Chang IS, Ha KS, Lee EY, Lee J, Kim C, Korean J. Chem. Eng., 32(6), 1060 (2015)
  46. Zhang J, Gao Z, Cai Y, Cai Z, Yang J, Bao Y, Chin. J. Chem., 24, 703 (2016)
  47. Yasin M, Park S, Jeong Y, Lee EY, Lee J, Chang IS, Bioresour. Tecnol., 169, 637 (2014)
  48. Lee J, Jang N, Yasin M, Lee EY, Chang IS, Kim C, J. Ind. Eng. Chem., 39, 149 (2016)
  49. Ozkan O, Calimli A, Berber R, Oguz H, Chem. Eng. Sci., 55(14), 2737 (2000)
  50. Olle B, Bucak S, Holmes TC, Bromberg L, Hatton TA, Wang DIC, Ind. Eng. Chem. Res., 45(12), 4355 (2006)
  51. Zhu HY, Shanks BH, Heindel TJ, Ind. Eng. Chem. Res., 47(20), 7881 (2008)
  52. Komati S, Suresh AK, Ind. Eng. Chem. Res., 49(1), 390 (2010)
  53. Zhang S, Wang D, Fan PP, Sun LP, Chem. Eng. Res. Des., 100, 434 (2015)
  54. Lee J, Kim K, Chang IS, Kim MG, Ha KS, Lee EY, Lee J, Kim C, J. Mol. Liq., 215, 154 (2016)
  55. Kluytmans J, Wachem BV, Kuster B, Schouten J, Chem. Eng. Sci., 58, 4719 (2003)
  56. Ruthiya KC, van der Schaaf J, Kuster BFM, Schouten JC, Chem. Eng. J., 96(1-3), 55 (2003)
  57. Ruthiya KC, Kuster BFM, Schouten JC, Can. J. Chem. Eng., 81(3-4), 632 (2003)
  58. Yoon S, Chung JT, Kang YT, Int. J. Heat Mass Transf., 73, 399 (2014)
  59. Rols JL, Goma G, Biotechnol. Lett., 13, 7 (1991)
  60. MoraAo A, Maia CI, Fonseca MMR, Vasconcelos JMT, Alves SS, Bioproc. Biosyst. Eng., 20, 165 (1999)
  61. Kundu A, Dumont E, Duquenne AM, Delmas H, Can. J. Chem. Eng., 81(3-4), 640 (2003)
  62. Zhu HY, Shanks BH, Heindel TJ, Ind. Eng. Chem. Res., 48(6), 3206 (2009)
  63. Baz-Rodriguez SA, Botello-Alvarez JE, Estrada-Baltazar A, Vilchiz-Bravo LE, Padilla-Medina JA, Miranda-Lopez R, Chem. Eng. Res. Des., 92(11), 2352 (2014)
  64. Kim K, Lee J, Seo K, Kim MG, Ha KS, Kim C, J. Ind. Eng. Chem., 33, 326 (2016)
  65. Jang N, Yasin M, Kang H, Lee Y, Park GW, Park S, Chang IS, Bioresour. Technol., 263, 375 (2018)
  66. Painmanakul P, Loubiere K, Hebrard G, Mietton-Peuchot M, Roustan M, Chem. Eng. Sci., 60(22), 6480 (2005)
  67. Dumont E, Delmas H, Chem. Eng. Process., 42(6), 419 (2003)
  68. Sardeing R, Painmanakul P, Hebrard G, Chem. Eng. Sci., 61(19), 6249 (2006)
  69. Moraveji MK, Sajjadi B, Davarnejad R, Chem. Eng. Technol., 34(3), 465 (2011)
  70. Kim KM, Seo KJ, Kim YJ, Yang JM, Ha KS, Lee JW, Kim CI, J. Ind. Eng. Chem., 53, 228 (2017)
  71. Kim K, Kim Y, Yang J, Ha KS, Usta H, Lee J, Kim C, J. Ind. Eng. Chem., 46, 350 (2017)
  72. Tang WT, Fan LS, Ind. Eng. Chem. Res., 29, 128 (1990)
  73. Littlejohns JV, Daugulis AJ, Chem. Eng. J., 129(1-3), 67 (2007)