화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.87, 68-77, July, 2020
Leakage and swell in emulsion liquid membrane systems: Comparing continuous stirred-tank reactor and batch experiments
E-mail:
Emulsion liquid membrane (ELM) systems can efficiently extract and concentrate dilute solutes in a variety of applications and chemistries. Internal phase leakage and swell reduce extraction efficiency and concentration, which limits their use. Nearly all studies of ELM leakage and swell have been conducted in batch systems, although continuous flow systems are preferred for industrial applications. The objective of this investigation was to assess the ability of batch experiments to predict continuous system performance with respect to internal phase leakage and swell. The effects of five factors (surfactant concentration, osmotic pressure, membrane viscosity, internal phase volume fraction, and extraction vessel stir rate) on leakage and swell were measured in a continuous stirred-tank reactor (CSTR) system without solute extraction. The results were compared with those reported previously for a batch system with the same experimental conditions and vessel geometry. Overall, the effects of the five factors in the CSTR system are qualitatively consistent with the batch system observations, suggesting that the influential variables in the batch system are similarly influential in the CSTR system. Leakage and swell in the CSTR and batch systems are correlated with similar amounts of swell in both systems but consistently smaller leakage in the CSTR configuration.
  1. Marr RJ, Draxler J, Membrane Handbook, Springer, Boston, MA, 1992.
  2. Gu Z, Ho WSW, Li N, Membrane Handbook, Springer, Boston, MA, 1992.
  3. Sastre AM, Kumar A, Shukla JP, Singh RK, Sep. Purif. Methods, 27(2), 213 (1998)
  4. Perera JM, Stevens GW, Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, CRC Press, Boca Raton, FL, 2009.
  5. Chakraborty M, Bhattacharya C, Datta S, Liquid Membranes, Elsevier, Amsterdam, 2010.
  6. Ahmad AL, Kusumastuti A, Derek CJC, Ooi BS, Chem. Eng. J., 171(3), 870 (2011)
  7. Malik MA, Hashim MA, Nabi F, J. Dispersion Sci. Technol., 33, 346 (2012)
  8. Hussein MA, Mohammed AA, Atiya MA, Environ. Sci. Pollut. Res., 26, 36184 (2019)
  9. Kumar A, Thakur A, Panesar PS, Rev. Environ. Sci. Bio Technol., 18, 153 (2019)
  10. Li N, Separating hydrocarbons with liquid membranes, U.S. patent 3,410,794, November 12, 1968.
  11. Hatton TA, Lightfoot EN, Cahn RP, Li NN, Ind. Eng. Chem. Fundam., 22, 27 (1983)
  12. Teramoto M, Sakai T, Yanagawa K, Miyake Y, Sep. Sci. Technol., 18, 985 (1983)
  13. Borwankar RP, Chan CC, Wasan DT, Kurzeja RM, Gu ZM, Li NN, AlChE J., 34, 753 (1988)
  14. Wang CC, Bunge AL, J. Membr. Sci., 53, 105 (1990)
  15. WRIGHT JB, NILSEN DN, HUNDLEY G, GALVAN GJ, Miner. Eng., 8(4), 549 (1995)
  16. Chan CC, Yang JF, Sep. Sci. Technol., 30(15), 3001 (1995)
  17. Gleason KJ, Yu JH, Bunge AL, Wright JD, Chemical Separations with Liquid Membranes, 1996.
  18. Way JD, Ho WSW, Chemical Separations with Liquid Membranes, 1996.
  19. Kim JK, Kim WS, J. Ind. Eng. Chem., 4(2), 105 (1998)
  20. Matsumoto M, Ohtake T, Hirata M, Hano T, J. Chem. Technol. Biotechnol., 73(3), 237 (1998)
  21. Breembroek GRM, Witkamp GJ, Van Rosmalen GM, Sep. Sci. Technol., 35(10), 1539 (2000)
  22. Kim SJ, Kim SC, Kawasaki J, Sep. Sci. Technol., 36(16), 3585 (2001)
  23. Lee SC, Kim HC, J. Membr. Sci., 367(1-2), 190 (2011)
  24. Bhowal A, Bhattacharyya G, Inturu B, Datta S, Sep. Purif. Technol., 99, 69 (2012)
  25. Zeng LL, Yang L, Liu Q, Li WS, Yang YQ, Ind. Eng. Chem. Res., 54(40), 9832 (2015)
  26. Zeng LL, Liu Y, Yang T, Yang YQ, Tang KW, Chem. Eng. Res. Des., 140, 261 (2018)
  27. Wang CC, Bunge AL, J. Membr. Sci., 53, 71 (1990)
  28. Teramoto M, Sakai T, Yanagawa K, Ohsuga M, Miyake Y, Sep. Sci. Technol., 18, 735 (1983)
  29. Kulkarni PS, Tiwari KK, Mahajani VV, J. Chem. Technol. Biotechnol., 75(7), 553 (2000)
  30. Kulkarni PS, Mukhopadhyay S, Bellary MP, Ghosh SK, Hydrometallurgy, 64, 49 (2002)
  31. Park Y, Forney LJ, Kim JH, Skelland AHP, Chem. Eng. Sci., 59(24), 5725 (2004)
  32. Yan J, Pal R, J. Membr. Sci., 190(1), 79 (2001)
  33. Wan YH, Zhang XJ, J. Membr. Sci., 196(2), 185 (2002)
  34. Yan J, Pal R, J. Membr. Sci., 244(1-2), 193 (2004)
  35. Gupta S, Chakraborty M, Murthy ZVP, J. Dispersion Sci. Technol., 34, 1733 (2013)
  36. Davoodi-Nasab P, Rahabr-Kelishami A, Safdari J, Sep. Purif. Technol., 219, 150 (2019)
  37. Pfeiffer RM, Bunge AL, Navidi W, Sep. Sci. Technol., 38(3), 519 (2003)
  38. Box GP, Hunter WG, Hunter JS, Statistics for Experimenters, John Wiley & Sons, Inc., New York, 1978.
  39. Ho WSW, Li NN, Membrane Handbook,Springer, Boston, MA, 1992.
  40. Reed DL, Bunge AL, Noble RD, Liquid Membranes: Theory and Applications, American Chemical Society,1987.
  41. Khadem B, Sheibat-Othman N, Chem. Eng. J., 366, 587 (2019)
  42. Bandyopadhyaya R, Bhowal A, Datta S, Sanyal SK, Chem. Eng. Sci., 53(15), 2799 (1998)
  43. Florence AT, Whitehill D, J. Colloid Interface Sci., 79, 243 (1981)
  44. Khadem B, Sheibat-Othman N, Computer Aided Chemical Engineering, Elsevier, 2017.
  45. Kumbasar RA, J. Hazard. Mater., 178(1-3), 875 (2010)