Applied Chemistry for Engineering, Vol.31, No.3, 284-290, June, 2020
Synthesis and Characterization of Energetic Thermoplastic Elastomers based on Carboxylated GAP Copolymers
E-mail:,
C[GAP-ETPE and poly(GA-carboxylate)-ETPEs] were synthesized using isophorone diisocyanate (IPDI), dibutyltin dilaurate (DBTDL), 1,4-butanediol (1,4-BD), and soft segment oligomers such as GAP and poly(GA-carboxylate). The synthesized GAP-ETPE and poly(GA-carboxylate)-ETPEs were characterized by Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), universal testing machine (UTM), calorimetry and sensitivity towards friction and impact. DSC and TGA results showed that the introduction of carboxylate group in GAP helped to have better thermal properties. Glass transition temperatures of poly(GA-carboxylate)-ETPEs decreased from -31 ℃ to -33 ℃ compared to that of GAP-ETPE (-29 ℃). The first thermal decomposition temperature in poly(GA0.8-octanoate0.2)-ETPE (242 ℃) increased in comparison to that of GAP-ETPE (227 ℃). Furthermore, from calorimetry data, poly(GA-carboxylate)-ETPEs exhibited negative formation enthalpies (-6.94 and -7.21 kJ/g) and higher heats of combustion (46713 and 46587 kJ/mol) compared to that of GAP-ETPE (42,262 kJ/mol). Overall, poly(GA-carboxylate)-ETPEs could be good candidates for a polymeric binder in solid propellant due to better energetic, mechanical and thermal properties in comparison to those of GAP-ETPE. Such properties are beneficial to application and processing of ETPE.
Keywords:Solid propellant;Glycidyl azide polymer;GAP copolymer;Carboxylated GAP;Energetic thermoplastic elastomer
- Filippi S, Mori L, Cappello M, Polacco G, Propell. Explos. Pyrot., 42, 826 (2017)
- Wu Y, Luo Y, Ge Z, Propell. Explos. Pyrot., 40, 67 (2015)
- Diaz E, Brousseau P, Emery R, Propell. Explos. Pyrot., 28, 101 (2003)
- Betzler FM, Hartdegen VA, Klapotke TM, Sproll SM, Cent. Eur. J. Energ. Mater., 13, 289 (2016)
- Sikder AK, Reddy S, Propell. Explos. Pyrot., 38, 14 (2013)
- Zhang Z, Luo N, Deng J, Ge Z, Luo Y, J. Elastom. Plast., 48, 728 (2016)
- You JS, Kweon JO, Kang SC, Noh ST, Macromol. Res., 18(12), 1226 (2010)
- Kawamoto A, Oliveira JIS, Dutra RCL, Rezende LC, Keicher T, Krause H, J. Aerosp. Technol. Manag., 1, 35 (2009)
- Behera PK, Usha KM, Guchhait PK, Jehnichen D, Das A, Voit B, Singha NK, RSC Adv., 6, 99404 (2019)
- Zhang C, Luo YJ, Jiao QJ, Zhai B, Guo XY, Propell. Explos. Pyrot., 39, 689 (2014)
- Eceiza A, Martin MD, de la Caba K, Kortaberria G, Gabilondo N, Corcuera MA, Mondragon I, Polym. Eng. Sci., 48(2), 297 (2008)
- You JS, Noh ST, Polym. Int., 62, 158 (2013)
- Chattopadhyay DK, Sreedhar B, Raju KVSN, Ind. Eng. Chem. Res., 44(6), 1772 (2005)
- Djonlagic J, Nikolic MS, Handbook of Engineering and Specialty Thermoplastics, 3, 377-428 (2011).
- Kim JS, Kim DK, Kweon JO, Lee JM, Noh ST, Kim SY, Appl. Chem. Eng., 24(3), 305 (2013)
- Elena OC, Francisca AA, Ana MTP, Cesar OB, Prog. Rubber Plast. Re., 27, 145 (2011)
- You JS, Kang SC, Kweon SK, Kim HL, Ahn YH, Noh ST, Thermochim. Acta, 537, 51 (2012)
- Kim H, Jang Y, Noh S, Jeong J, Kim D, Kang B, Kang T, Choi H, Rhee H, RSC Adv., 8, 20032 (2018)
- Pedreira SM, Pinto JRA, Campos EA, Mattos EDC, Junior MSO, Oliveira JIS, Dutra RCL, J. Aerosp. Technol. Manag., 8, 18 (2016)
- Zhang Y, Zhao J, Yang P, He SJ, Huang HJ, Polym. Eng. Sci., 52(4), 768 (2012)
- Li Y, Li G, Li J, Luo Y, New J. Chem., 42, 3087 (2018)
- Mohan YM, Raju KM, Des. Monomers Polym., 8, 159 (2005)
- Li B, Zhao Y, Liu G, Li X, Luo Y, J. Therm. Anal. Calorim., 126, 717 (2016)
- Diaz E, Brousseau P, Ampleman G, Prud’homme RE, Propell. Explos. Pyrot., 28, 210 (2003)
- Pisharath S, Ang HG, Polym. Degrad. Stabil., 92, 1365 (2007)
- Hafner S, Keicher T, Klapotke TM, Propell. Explos. Pyrot., 43, 126 (2018)
- Diaz E, Brousseau P, Ampleman G, Prud’homme RE, Propell. Explos. Pyrot., 28, 101 (2003)