화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.3, 341-345, June, 2020
오존수 산화를 이용한 활성탄 흡착탑의 현장 재생 시 흡착용량 및 구조특성의 변화
Changes of Adsorption Capacity and Structural Properties during in situ Regeneration of Activated Carbon Bed Using Ozonated Water
E-mail:
초록
하폐수처리 및 정수처리에 사용되는 활성탄 흡착 공정에서 기존의 활성탄 열재생법 비해 활성탄 손실과 불완전 연소로 인한 오염물질 발생도 적으며, 사용 활성탄의 인발-재생-재충진에 소요되는 시간의 절약이 가능한 재생 방법으로 오존수를 이용한 in situ regeneration에 대한 기초연구를 수행하였다. 활성탄 흡착 컬럼 상에서 페놀(phenol) 및 PEG를 흡착 파과 시킨 후 오존수 접촉으로 흡착물질을 분해 제거하는 흡착-재생 싸이클을 반복하였다. 오존수 접촉에 의한 재생 횟수가 증가할수록 페놀 흡착용량은 어느 정도 감소하지만, 일정 수준으로의 감소 후에는 구조 변화가 안정화되어 추가적인 감소가 일어나지 않았다. 흡착 용량이 감소하는 이유는 오존과의 반응에 의해 활성탄의 미세공 크기가 증가하면서 비표면적이 감소하기 때문으로 나타났다. 이러한 세공 크기의 변화와 비표면적의 변화로 인하여 재생 후 in-pore adsorption이 우세한 페놀과 같은 저분자량 물질의 흡착효율은 감소하게 되나 external adsorption 비율이 큰 PEG와 같은 고분자량 물질의 흡착효율은 크게 영향을 받지 않았다. 세공 크기 및 비표면적의 변화는 오존수와의 접촉시간이 길어질수록 심화되므로 제거하려는 물질의 크기를 고려하고 접촉시간을 조절함으로써 흡착 효율의 유지를 제어하는 것이 필요하다.
An in situ regeneration of activated carbon bed using an ozonated water was studied in order for avoiding the carbon loss, contaminant emission and time consuming for discharge-regeneration-repacking in a conventional thermal regeneration process. Using phenol and polyethylene glycol (PEG) as adsorbates, the adsorption breakthrough and in situ regeneration with the ozonated water were repeated. These organics were supposed to degrade by the oxidation reaction of ozone, regenerating the bed for reuse. As the number of regeneration increased, the adsorption capacity for phenol was reduced, but the change was stabilized showing no further reduction after reaching a certain degree of decrement. The reduction of adsorption capacity was due to the increase of pore size resulting in the decrease of specific surface area during ozonation. The adsorption capacity of phenol decreased after the ozonated regeneration because the in-pore adsorption was prevalent for small molecules like phenol. However, PEG did not show such decrease and the adsorption capacity was constantly maintained after several cycles of the ozonated regeneration probably because the external surface adsorption was the major mechanism for large molecules like PEG. Since the reduction in the pore size and specific surface area for small molecules were proportional to the duration of contact time with the ozonated water, careful considerations of the solute size to be removed and controlling the contact time were necessary to enhance the performance of the ozonated in situ regeneration of activated carbon bed.
  1. Reynolds TD, Richards PA, Unit Operations and Process in Environmental Engineering, 2nd Ed., PWS, MA, USA (1996).
  2. Park JW, Kim HC, Meyer AS, Kim S, Maeng SK, Chemosphere, 160, 189 (2016)
  3. Lykins BW, Clark RM, Adams JQ, J. Am. Water Works Assoc., 80(5), 85 (1988)
  4. Martin RJ, Ng WJ, Chemistry for the Protection of the Environment, pp. 427-438, Environmental Science Research, vol 42. Springer, MA, USA (1991).
  5. He XX, Elkouz M, Inyang M, Dickenson E, Wert EC, J. Hazard. Mater., 326, 101 (2017)
  6. Bachar A, Gurzeda B, Zembrzuska J, Nocun M, Krawczyk P, J. Solid State Electrochem., 22, 3965 (2018)
  7. Lee I, Lee E, Lee H, Lee K, Appl. Chem. Eng., 22(6), 617 (2011)
  8. Lee H, Lee E, Lee CH, Lee K, J. Ind. Eng. Chem., 17(3), 468 (2011)
  9. Luu HT, Minh DN, Lee KS, Appl. Chem. Eng., 29(6), 690 (2018)
  10. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington DC, USA (2005).
  11. Alvarez PM, Beltran FJ, Masa FJ, Pocostales JP, Appl. Catal. B: Environ., 92(3-4), 393 (2009)
  12. Cannon FS, Snoryink VL, Lee RG, Dagois G, Dewolfe JR, J. Am. Water Works Assoc., 85(3), 76 (1993)
  13. Guo Y, Du E, Energy Procedia, 17, 444 (2012)
  14. Valdes H, Sanchez-Polo M, Rivera-Utrilla J, Zaror CA, Langmuir, 18(6), 2111 (2002)
  15. Chaichanawong J, Yamamoto T, Ohmori T, J. Hazard. Mater., 175(1-3), 673 (2010)
  16. Yaghmaeian K, Moussavi G, Alahabadi A, Chem. Eng. J., 236, 538 (2014)
  17. Rivera-Utrilla J, Sanchez-Polo M, Adsorption, 17, 611 (2011)