화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.7, 1166-1173, July, 2020
Rapid removal of low concentrations of mercury from wastewater using coal gasification slag
E-mail:,
Coal gasification slag (CGS) is a carbon-containing solid waste used as an adsorbent to remove low concentrations of mercury from wastewater in a series of batch tests to assess its adsorption properties and safe storage. The results showed that the adsorption of mercury on CGS was a very rapid and efficient process, and adsorption equilibrium was reached in only 10-40 min. A pseudo-second-order kinetics model provided a better fit to the equilibrium data. The adsorption capacity on CGS was just slightly below the value of active carbon. CGS showed the highest mercury removal efficiency at a solution pH of 4. Although the presence of other metal cations and anions affected the adsorption, CGS showed good selectivity for mercury ions. The adsorption of mercury was not affected by low concentrations of Cr3+ or Cu2+. The negative interference of anions on the removal efficiency followed the order: Cl?>H2PO4 > CO3 2. The adsorption mechanism related to the functional groups included ion exchange, precipitation, coordination complexation, and surface complexation. Mercury adsorbed on CGS leached very slowly in weakly acidic or basic solution. All results of the study indicate that CGS is an economical and safe adsorbent for potential industrial applications.
  1. Huang N, Zhai LP, Xu H, Jiang DL, J. Am. Chem. Soc., 139(6), 2428 (2017)
  2. Davodi B, Ghorbani M, Jahangiri M, J. Taiwan Inst. Chem. Eng., 80, 363 (2017)
  3. Liu L, Ding L, Wu X, Deng F, Ind. Eng. Chem. Res., 55, 51 (2016)
  4. Wang P, Wang R, Wang C, Qian J, J. Comput. Theor. Nanosci., 13, 5714 (2016)
  5. Hadi P, To MH, Hui CW, Lin CSK, McKay G, Water Res., 73, 37 (2015)
  6. Cox M, El-Shafey E, Pichugin AA, Appleton Q, J. Chem. Technol. Biotechnol., 75(6), 427 (2000)
  7. Wang Z, Xu J, Hu Y, Zhao H, Zhou J, Liu Y, Lou Z, Xiu XH, J. Taiwan Inst. Chem. Eng., 60, 394 (2015)
  8. Ackerman JT, Kraus TE, Fleck JA, David PK, William RH, Sandra MB, Herzog MP, Hartman CA, Bachand PAM, Environ. Sci. Technol., 49, 6304 (2015)
  9. Yan X, Meng J, Hu X, Feng R, Zhou M, J. Sol-Gel Sci. Technol., 89, 617 (2019)
  10. Zhang D, Yin Y, Liu J, Chem. Speciat. Bioavailab., 29, 161 (2017)
  11. Li B, Zhang Y, Ma D, Shi Z, Ma S, Nat. Commun., 5, 5537 (2014)
  12. Lone S, Yoon DH, Lee H, Cheong IW, Environ. Sci.: Water Res. Technol., 5, 83 (2019).
  13. Attari M, Bukhari SS, Kazemian H, Rohani S, J. Environ. Chem. Eng., 5, 391 (2016)
  14. Ecer U, Yilmaz S, Sahan T, Water Sci. Technol., 78, 1348 (2018)
  15. Yilmaz S, Zengin A, Akbulut Y, Sahan T, Environ. Sci. Pollut. Res., 26, 20454 (2019)
  16. Yilmaz S, Zengin A, Ecer U, Sahan T, Colloids Surf. A: Physicochem. Eng. Asp., 583, 123961 (2019)
  17. Uzun Y, Sahan T, Arch. Environ. Prot., 43, 37 (2017)
  18. Wang S, Chem. Ind. Eng. Prog., 35, 653 (2016)
  19. Xu SQ, Zhou ZJ, Gao XX, Yu GS, Gong X, Fuel Process. Technol., 90(9), 1062 (2009)
  20. Wu SY, Huang S, Ji LY, Wu YQ, Gao JS, Fuel, 122, 67 (2014)
  21. Gu Y, Qiao X, Microporous Mesoporous Mater., 276, 303 (2019)
  22. Liu S, Chen X, Ai W, Wei C, J. Clean Prod., 212, 1062 (2019)
  23. Sun Y, Lv D, Zhou J, Chemosphere, 185, 452 (2017)
  24. Park JH, Wang J, Zhou B, Mikhael JER, DeLaune RD, Environ. Pollut., 244, 627 (2019)
  25. Yılmaz S, Sahan T, Karabakan A, Korean J. Chem. Eng., 34(8), 2225 (2017)
  26. Sun DH, Zhang XD, Wu YD, Liu X, J. Hazard. Mater., 181(1-3), 335 (2010)
  27. Wang Y, Sun D, Korean J. Chem. Eng., 32(7), 1323 (2015)
  28. Chang MY, Juang RS, Colloids Surf. A: Physicochem. Eng. Asp., 269, 35 (2005)
  29. Faulconer EK, Mazyck DW, J. Environ. Chem. Eng., 5, 2879 (2017)
  30. Zhang D, Huo P, Liu W, Chinese J. Chem. Eng., 24, 446 (2016)
  31. Li ZC, Wu LY, Liu HJ, Lan HC, Qu JH, Chem. Eng. J., 228, 925 (2013)
  32. Ma LJ, Islam SM, Xiao CL, Zhao J, Liu HY, Yuan MW, Sun GB, Li HF, Ma SL, Kanatzidis MG, J. Am. Chem. Soc., 139(36), 12745 (2017)
  33. Azizi A, Moniri E, Hassani AH, Panahi HA, Miralinaghi M, Microchem. J., 145, 559 (2019)
  34. Li Y, Xiao HN, Pan YF, Zhang M, Jin YC, J. Hazard. Mater., 377, 88 (2019)
  35. Liu C, Peng J, Zhang L, Wang S, Ju S, Liu C, J. Clean Prod., 196, 109 (2018)
  36. Teimouri A, Esmaeili H, Foroutan R, Ramavandi B, Korean J. Chem. Eng., 35(2), 479 (2018)
  37. Tan GC, Sun WL, Xu YR, Wang HY, Xu N, Bioresour. Technol., 211, 727 (2016)
  38. Khoramzadeh AE, Nasemejad B, Halladj R, J. Taiwan Inst. Chem. E., 44, 266 (2013)
  39. Gupta NK, Gupta A, FlatChem., 11, 1 (2018)
  40. Aghdam K, Panahi HA, Alaei E, Hasani AH, Moniri E, Environ. Monit. Assess., 188, 223 (2016)
  41. Muliwa AM, Onyango MS, Maity A, Ochieng A, Water Sci. Technol., 75, 2841 (2017)
  42. AlOmar MK, Alsaadi MA, Jassam TM, Akib S, Hashim MA, J. Colloid Interface Sci., 497, 413 (2017)
  43. GB8978-1996, Integrated wastewater discharge standard, Publications, Beijing (1996).
  44. Liu P, Ptacek CJ, Blowes DW, Landis RC, J. Hazard. Mater., 308, 233 (2016)
  45. Hadi P, To MH, Hui CW, Li CSK, Mckay G, Water Res., 73, 37 (2015)
  46. Hutson ND, Attwood BC, Scheckel KG, Environ. Sci. Technol., 41, 1747 (2007)
  47. Kuma ASK, Jiang SJ, Tseng WL, J. Environ. Chem. Eng., 4, 2052 (2016)
  48. Magni E, Somorjai GA, Appl. Surf. Sci., 89, 187 (1995)
  49. Kumar ASK, Jiang SJ, RSC Adv., 5, 6294 (2015)
  50. GuanY, Hu T, Zhao L, Wu J, Tian F, Pan W, He P, Qi X, Li F, Xu K, Korean J. Chem. Eng., 36(1), 115 (2019)