화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.4, 519-526, July, 2020
Sulfur/Accelerator 비율이 천연고무 인장특성 및 구조불균형에 미치는 영향 연구
Influence of Sulfur/Accelerator Ratio on Tensile Properties and Structural Inhomogeneity of Natural Rubber
E-mail:
Sulfur and accelerators play very important roles in curing natural rubber, influencing the properties of rubber vulcanizates. Such properties are also associated with the microstructure of vulcanized natural rubber. In this study, the relationships between tensile properties, strain-induced crystallization behavior, and structural inhomogeneity were investigated with special attention to the ratio of sulfur to accelerator (S/Acc). Increasing the S/Acc ratio increased crosslink density, simply from having more of the crosslinking agent. The highest tensile strength was obtained at unit ratio (=1), which was associated with SIC behavior based on wide angle x-ray diffraction measurements. Reductions in both the tensile strength and crystallinity were noticed when the crosslink density was relatively high. Structural inhomogeneity of network structures induced by crosslinking was investigated by means of small angle x-ray scattering, which showed the increased size and improved homogeneity of distribution with increased S/Acc ratio.
  1. Ciullo PA, Hewitt N, The Rubber Formulary, William Andrew, New York, 1999.
  2. Datta RN, Rubber Curing Systems, Smithers Rapra Technology, Shawbury, 2002.
  3. Bruning K, Schneider K, Roth SV, Heinrich G, Polymer, 54(22), 6200 (2013)
  4. Fukahori Y, Polymer, 51(7), 1621 (2010)
  5. Huneau B, Rubber Chem. Technol., 84, 425 (2011)
  6. Tosaka M, Senoo K, Kohjiya S, Ikeda Y, J. Appl. Phys., 101, 084909 (2007)
  7. Tosaka M, Kohjiya S, Murakami S, Poompradub S, Ikeda Y, Toki S, Sics I, Hsiao BS, Rubber Chem. Technol., 77, 711 (2004)
  8. Gonzalez L, Rodriguez A, Valentin JL, Marcos-Fernandez A, Posadas P, Kautschuk und Gummi Kunststoffe, 58, 638 (2005).
  9. Zhao F, Bi W, Zhao S, J. Macromol. Sci. B, 50, 1460 (2011)
  10. Boonkerd K, Deeprasertkul C, Boonsomwong K, Rubber Chem. Technol., 89, 450 (2016)
  11. Trabelsi S, Albouy PA, Rault J, Macromolecules, 36(20), 7624 (2003)
  12. Chenal JM, Gauthier C, Chazeau L, Guy L, Bomal Y, Polymer, 48(23), 6893 (2007)
  13. Chenal JM, Chazeau L, Guy L, Bomal Y, Gauthier C, Polymer, 48(4), 1042 (2007)
  14. Xie ZT, Luo MC, Huang C, Wei LY, Liu YH, Fu X, Huang GS, Wu JR, Polymer, 151, 279 (2018)
  15. Flory PJ, Rehner J, J. Chem. Phys., 11, 512 (1943)
  16. Musto S, Barbera V, Cipolletti V, Citterio A, Galimberti M, Express Polym. Lett., 11, 435 (2017)
  17. Park BH, Jung IG, Park SS, Polym. Korea, 25(1), 63 (2001)
  18. Rabiei S, Shojaei A, Eur. Polym. J., 81, 98 (2016)
  19. Nabil H, Ismail H, Azura AR, J. Vinyl Addit. Technol., 21, 79 (2015)
  20. Masa A, Saito R, Saito H, Sakai T, Kaesaman A, Lopattananon N, J. Appl. Polym. Sci., 133, 43214 (2016)
  21. Tosaka M, Polym. J., 39, 1207 (2007)
  22. Hamed GR, Rattanasom N, Rubber Chem. Technol., 75, 935 (2002)
  23. Ozbas B, Toki S, Hsiao BS, Chu B, Register RA, Aksay IA, Prud'homme RK, Adamson DH, J. Polym. Sci. B: Polym. Phys., 50(10), 718 (2012)
  24. Tosaka M, Murakami S, Poompradub S, Kohjiya S, Ikeda Y, Toki S, Sics I, Hsiao BS, Macromolecules, 37(9), 3299 (2004)
  25. Ikeda Y, Yasuda Y, Hijikata K, Tosaka M, Kohjiya S, Macromolecules, 41(15), 5876 (2008)
  26. Andrews EH, J. Polym. Sci. B: Polym. Phys., 4, 668 (1966)
  27. Salgueiro W, Somoza A, Torrian IL, Marzocca AJ, J. Polym. Sci. B: Polym. Phys., 45(21), 2966 (2007)
  28. Osaka N, Kato M, Saito H, J. Appl. Polym. Sci., 129(6), 3396 (2013)
  29. Ikeda Y, Higashitani N, Hijikata K, Kokubo Y, Morita Y, Shibayama M, Osaka N, Suzuki T, Endo H, Kohjiya S, Macromolecules, 42(7), 2741 (2009)
  30. Sainumsai W, Toki S, Amnuaypornsri S, Nimpaiboon A, Sakdapipanich J, Rong L, Hsiao BS, Suchiva K, Rubber Chem. Technol., 90, 728 (2017)
  31. Debye P, Bueche AM, J. Appl. Phys., 20, 518 (1949)
  32. Izumi A, Shudo Y, Nakao T, Shibayama M, Polymer, 103, 152 (2016)