화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.90, 76-84, October, 2020
Co-solvent concentration influence of two- and three-component systems on the high pressure cloud-point behavior for the poly(vinyl stearate) under supercritical CO2
E-mail:
In this research, the experiment in high pressure cloud-point behavior at T (temperature) ≤484.7 K and at p (pressure) ≤207.70 MPa is carried out for the poly(vinyl stearate) [P(VS)] + vinyl stearate (VS) [or C3H8(propane), C4H10(butane), C3H6O(acetone) and C2H5OH(ethanol)] containing supercritical CO2(car-bon dioxide). The phase equilibria data for the P(VS) + (10.6 to 54.6) wt% VS mixtures in CO2 are reported for a variety of curves from [UCST(upper critical solution temperature) to LCST(lower critical solution temperature)] in the pressure-temperature space in accordance with the increase of the VS weight fraction. Curves for P(VS) + CO2 + 63.0 wt% VS phase behavior intersect a phase (fluid) → LV (liquid + va- por) curve at ~383 K (at ~19.00 MPa). The position of the cloud-point for P(VS) + CO2 curve shifts to lower pressures and temperatures as soon as VS is added. The solubility curves for the P(VS) + (21.9 to 47.9) wt% propane and P(VS) + (27.7 to 46.0) wt% butane mixture under supercritical CO2 vary from UCST to LCST with a decrease in pressure and a co-solvent increase. And also, co-solvent effect of (25.8-95.0) wt% acetone and (13.9.95.0) wt% ethanol in P(VS) + CO2 mixture is shown in the UCST region at temperature range of (428.3 ≤ T ≤ 484.7) K. Phase equilibria data at high pressures was presented for the VS + CO2 system at p ≤ 27.40 MPa and at (313.2 ≤ T ≤ 393.2) K. The VS + CO2 system shows type-I phase curve with a consecutive mixture critical line and was properly correlated with the Peng-Robinson equation.
  1. Gornert M, Sadowski G, J. Supercrit. Fluids, 46(3), 218 (2008)
  2. Cho SH, Lee BS, Byun HS, J. CO2 Util., 25, 39 (2018)
  3. Kirby CF, McHugh MA, Chem. Rev., 99(2), 565 (1999)
  4. Kendall JL, Canelas DA, Young JL, DeSimone JM, Chem. Rev., 99(2), 543 (1999)
  5. Jung J, Perrut M, J. Supercrit. Fluids, 20(3), 179 (2001)
  6. Pratt JA, MS Thesis, The Johns Hopkins University, 1994.
  7. Byun HS, Hasch BM, McHugh MA, Mahling FO, Busch M, Buback M, Macromolecules, 29(5), 1625 (1996)
  8. Kim CR, Byun HS, J. Chem. Thermodyn., 97, 26 (2016)
  9. Waegemaekers THJM, Bensink MPM, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 137, 95 (1984)
  10. Kikic I, J. Supercrit. Fluids, 47(3), 458 (2009)
  11. Prausnitz JM, et al., Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd ed., Englewood Cliffs, Prentice-Hall: NJ, 1986.
  12. McHugh MA, Krukonis VJ, Supercritical Fluid Extraction: Principles and Practice, Butterworth, Boston, MA, 1994.
  13. McHugh MA, Rindfleisch F, Kuntz PT, Schmaltz C, Buback M, Polymer, 39(24), 6049 (1998)
  14. Lee SH, LoStracco MA, Hasch BM, McHugh MA, J. Phys. Chem., 98(15), 4055 (1994)
  15. Kiran E, J. Supercrit. Fluids, 110, 126 (2016)
  16. Mallepally RR, Bamgbade BA, Rowane AJ, Rokni HB, Newkirk MS, McHugh MA, J. Supercrit. Fluids, 134, 33 (2018)
  17. Mallepally RR, Gadepalli VS, Bamgbade BA, Cain N, McHugh MA, J. Chem. Eng. Data, 61(8), 2818 (2016)
  18. Wu Y, Newkirk MS, Dudek ST, Williams K, Krukonis V, McHugh MA, Ind. Eng. Chem. Res., 53(24), 10133 (2014)
  19. Liu J, Li D, Byun HS, McHugh MA, Fluid Phase Equilib., 267(1), 39 (2008)
  20. Albrecht KL, Stein FP, Han SJ, Gregg CJ, Radosz M, Fluid Phase Equilib., 117(1-2), 84 (1996)
  21. Folie B, Gregg C, Luft G, Radosz M, Fluid Phase Equilib., 120(1-2), 11 (1996)
  22. Liu S, Lee DH, Byun HS, J. Chem. Eng. Data, 52(2), 410 (2007)
  23. Cho SH, Kim CR, Yoon SD, Byun HS, Fluid Phase Equilib., 396, 74 (2015)
  24. Cowie JMG, McEwen IJ, Polymer, 24, 1453 (1983)
  25. Cowie JMG, McEwen IJ, J. Chem. Soc. Faraday Trans., 70, 171 (1974)
  26. Wolf BA, Blaum G, J. Polym. Sci. Poly. Phys., 13, 1115 (1975)
  27. Wolf BA, Blaum G, Macromol. Chem. Phys., 177, 1073 (1976)
  28. Lee BS, Byun HS, Korean J. Chem. Eng., 34(7), 2056 (2017)
  29. Choi YS, Chio SW, Byun HS, Korean J. Chem. Eng., 33(1), 277 (2016)
  30. Cowie JMG, McEwen IJ, Polym. Int., 7, 459 (1975)
  31. Peng DY, Robinson DB, Ind. Eng. Chem. Res. Fundam., 15, 59 (1976)
  32. Poling BE, Prausnitz JM, O’Connell JP, The Properties of Gases and Liquid, 5th ed., McGraw-Hill, New York, 2001.
  33. Cho SH, Kim CR, Yoon SD, Byun HS, Fluid Phase Equilib., 396, 74 (2015)
  34. Baek SH, Byun HS, J. Chem. Thermodyn., 92, 191 (2016)
  35. McHugh MA, Park IH, Reisinger JJ, Ren Y, Lodge TP, Hillmyer MA, Macromolecules, 35(12), 4653 (2002)
  36. Chirico RD, Frenkel M, Diky VV, Marsh KN, Wilhoit RC, J. Chem. Eng. Data, 48(5), 1344 (2003)
  37. Yoon SD, Byun HS, J. Chem. Thermodyn., 71, 91 (2014)
  38. Benson RC, Flygare WH, Chem. Phys. Lett., 4, 141 (1969)
  39. Meyer G, Toennies JP, Chem. Phys., 52, 39 (1980)
  40. Mertdogan CA, Johns Hopkins University, Baltimore, Maryland, 1997.
  41. Scott RL, van Konynenburg PB, Discuss. Faraday Soc., 49, 87 (1970)
  42. Cho SH, Yoon SD, Byun HS, Korean J. Chem. Eng., 30(3), 739 (2013)
  43. Sigma-Aldrich Chemical Company Inc, Catalog Handbook of Fine Chemicals, Milwaukee, WI, 2012.