Journal of Industrial and Engineering Chemistry, Vol.90, 85-94, October, 2020
Improved mechanical and biological properties of biodegradable thinner poly(L-lactic acid) tubes by bi-directional drawing
E-mail:
Fully biodegradable polymer stents still suffer from weak mechanical properties and thick stent struts, which could induce thrombosis under in vivo clinical applications. To address these problems, we fabricated a thinner poly(L-lactic acid) (PLLA) tube with improved mechanical properties through a thermal drawing process and characterized the tubes using several analytical tools. The mechanical properties of the tubes showed that the optimized conditions for the axial drawing were at 65 °C (A65) and 95 °C (A95), and those for the radial drawing process were also at 65 °C (R65) and 95 °C (R95). The bidirectional drawing process (A65/R95), performed at 65 °C for axial and then at 95 °C for radial drawings, demonstrated an excellent way to reduce the thickness of the tubes while reinforcing the mechanical properties. In addition, it reduced the amount of adsorbed fibrinogen and increased the albumin/ fibrinogen ratio. Moreover, the platelet adhesion exhibited lower number and activity with completely round morphology. It also promoted the adhesion and proliferation of endothelial cells with stretched morphology and a significant increase of filopodial outgrowth. From these results, it can be seen that a combination of the axial and radial processes may be a promising strategy for improving the physicochemical, mechanical, and biological properties of PLLA tubes to be used for the fabrication of fully biodegradable polymeric stents.
Keywords:Medical device;Stent strut;Biodegradable polymer;Thermal drawing process;Mechanical property;Blood compatibility
- Hansson GK, N. Engl. J. Med., 352, 1685 (2005)
- Bedair TM, Kang SN, Joung YK, Han DK, J. Biomed. Nanotechnol., 12, 2015 (2016)
- Bedair TM, Cho Y, Park BJ, Joung YK, Han DK, Biomater. Biomed. Eng., 1, 131 (2014)
- Cho Y, Vu BQ, Bedair TM, Park BJ, Joung YK, Han DK, J. Bioact. Compat. Polym., 29, 515 (2014)
- Bedair TM, Cho Y, Joung YK, Han DK, Colloids Surf. B: Biointerfaces, 122, 808 (2014)
- Bedair TM, Yu SJ, Im SG, Park BJ, Joung YK, Han DK, J. Colloid Interface Sci., 460, 189 (2015)
- Sakamoto A, Jinnouchi H, Torii S, Virmani R, Finn AV, Bioengineering, 5, 71 (2018)
- Kutcher MA, JACC Cardiovasc. Interv., 1816 (2017).
- Ulery BD, Nair LS, Laurencin CT, J. Polym. Sci. B: Polym. Phys., 49(12), 832 (2011)
- Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP, Nat. Med., 15, 665 (2009)
- Sotomi Y, Onuma Y, Collet C, Tenekecioglu E, Virmani R, Kleiman NS, Serruys PW, Circ. Res., 120, 1341 (2017)
- Tenekecioglu E, Poon EK, Collet C, Thondapu V, Torii R, Bourantas CV, Zeng Y, Onuma Y, Ooi AS, Serruys PW, JACC Cardiovasc. Interv., 9, 2167 (2016)
- Im SH, Jung Y, Jang Y, Kim SH, Biofabrication, 8, 045010 (2016)
- Schneider T, Kohl B, Sauter T, Kratz K, Lendlein A, Ertel W, Schulze-Tanzil G, Clin. Hemorheol. Microcirc., 52, 325 (2012)
- Mai F, Tu W, Bilotti E, Peijs T, Fibers, 3, 523 (2015)
- Qin Y, Liu S, Zhang Y, Yuan M, Li H, Yuan M, Int. J. Biol. Macromol., 70, 327 (2014)
- Wang ZY, Teoh SH, Johana NB, Chong MSK, Teo EY, Hong MH, Chan JKY, San Thian E, J. Mater. Chem. B, 2, 5898 (2014)
- Im SH, Kim CY, Jung Y, Jang Y, Kim SH, Biomater. Sci., 5, 422 (2017)
- Jung B, Hong S, Kim SC, Hwang C, Tissue Eng. Regen. Med., 15, 275 (2018)
- Lee J, Lee SH, Lee BK, Park SH, Cho YS, Park Y, Tissue Eng. Regen. Med., 15, 403 (2018)
- Oh SY, Choi DH, Jin YM, Yu Y, Kim HY, Kim G, Park YS, Jo I, Tissue Eng. Regen. Med., 16, 631 (2019)
- Puchalski M, Kwolek S, Szparaga G, Chrzanowski M, Krucinska I, Polymers, 9, 18 (2017)
- Pantani R, Sorrentino A, Polym. Degrad. Stabil., 98, 1089 (2013)
- Bedair TM, Bedair HM, Ko KW, Park W, Joung YK, Han DK, Colloids Surf. B: Biointerfaces, 181, 174 (2019)
- Li J, Li Z, Ye L, Zhao X, Coates P, Caton-Rose F, Martyn M, Eur. Polym. J., 90, 54 (2017)
- Yu L, Liu HS, Xie FW, Chen L, Li XX, Polym. Eng. Sci., 48(4), 634 (2008)
- Mano JF, Ribelles JLG, Alves NM, Sanchez MS, Polymer, 46(19), 8258 (2005)
- Middleton JC, Tipton AJ, Biomaterials, 21, 2335 (2000)
- Zhang J, Tashiro K, Tsuji H, Domb AJ, Macromolecules, 41(4), 1352 (2008)
- Delpouve N, Stoclet G, Saiter A, Dargent E, Marais S, J. Phys. Chem. B, 116(15), 4615 (2012)
- Turner J, Riga A, O’Connor A, Zhang J, Collis J, J. Therm. Anal. Calorim., 75, 257 (2004)
- Kim SM, Park SB, Bedari TM, Kim MH, Park BJ, Joung YK, Han DK, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 78, 39 (2017)
- Lai JCH, Rahman M, Hamdan S, Int. J. Polym. Sci., 2015 (2015)
- Sivaraman B, Latour RA, Biomaterials, 31, 832 (2010)
- Imani SM, Goudarzi A, Ghasemi S, Kalani A, Mahdinejad J, Proc. Inst. Mech. Eng. H J. Eng. Med., 228, 996 (2014)
- Ryan BJ, Poduska KM, Am. J. Phys., 76, 1074 (2008)
- Li J, Li Z, Ye L, Zhao X, Coates P, Caton-Rose F, Eur. Polym. J., 97, 68 (2017)
- Cutiongco MF, Goh SH, Aid-Launais R, Le Visage C, Low HY, Yim EK, Biomaterials, 84, 184 (2016)
- Zunszain PA, Ghuman J, Komatsu T, Tsuchida E, Curry S, BMC Struct. Biol., 3, 6 (2003)
- Khalifehzadeh R, Ciridon W, Ratner BD, Acta Biomater., 78, 23 (2018)
- Lyman D, Metcalf L, Albo D, Richards K, Lamb J, Trans. Am. Soc. Artif. Intern. Organs, 20, 474 (1974)
- Sun T, Tan H, Han D, Fu Q, Jiang L, Small, 1, 959 (2005)
- Goodman SL, Grasel TG, Cooper SL, Albrecht RM, J. Biomed. Mater. Res., 23, 105 (1989)
- Weng Y, Song Q, Zhou Y, Zhang L, Wang J, Chen J, Leng Y, Li S, Huang N, Biomaterials, 32, 1253 (2011)
- Bedair TM, ElNaggar MA, Joung YK, Han DK, J. Tissue Eng. 8, 2041731417731546 (2017).
- Venugopal B, Mogha P, Dhawan J, Majumder A, Biomater. Sci., 6, 1109 (2018)
- Park BU, Park SM, Lee KP, Lee SJ,, et al., J. Tissue Eng. 10, 2041731419887833 (2019).