- Previous Article
- Next Article
- Table of Contents
Applied Chemistry for Engineering, Vol.31, No.6, 585-590, December, 2020
암 바이오마커 검출용 비색법 기반 측면 흐름 면역 크로마토그래피 분석법(LFIA) 스트립의 최신 연구 동향
Recent Research Trend in Lateral Flow Immunoassay Strip (LFIA) with Colorimetric Method for Detection of Cancer Biomarkers
E-mail:
초록
암(예: 폐암, 전립선암, 간암, 부신겉질샘암종 등)의 조기 진단은 치료비용, 생존율, 완치 여부를 결정짓는 아주 중요한 단계다. 현재의 암 진단 시스템(예: 조직검사, 컴퓨터단층쵤영, 양전자방출단층쵤영, 자기공명영상, 초음파촬영 등)은 고가의 장비를 사용하거나 훈련된 고급 인력만이 수행 가능하기 때문에 신속한 조기 진단에 적합하지 못하다. 국제 의과학 사회는 현장검사(point of care) 디바이스 개발을 통한 효과적인 질병 관리 시스템 개발을 지향하고 있으며, 다양한 분석법 기반의 디바이스가 개발되어왔다. 이 중에서도 측면 흐름 면역 크로마토그래피 분석법 스트립은 경제적인 비용, 짧은 검사 시간, 사용자의 쉬운 접근성 등의 많은 이점들이 있다. 본 논문에서는 LFIA 스트립의 최신 연구 동향을 바탕으로 암 진단 관점에서의 비색법 기반 LFIA 스트립의 연구 방향 및 잠재적 응용에 대해 논의하고자 한다.
Successful early diagnosis of cancer diseases such as lung, prostate, liver and adrenocortical carcinoma is a key step in determining the cost of treatment, survival rate, and cure rate. Most of current cancer diagnosis systems including biopsy, computed tomography (CT), positron emission tomography (PET)-CT, magnetic resonance imaging (MRI), ultrasonography, etc., require expensive and complicated equipment with highly trained human resources. Global medical and scientific communities have thus made numerous efforts on developing effective but rapid disease management system via introducing a wide spectrum of point-of-care medical diagnosis devices. Among them, a lateral flow immunoassay strip technique has gained a great attention due to many advantages such as cost-effectiveness, short inspection time, and user friendly accessibility. In this mini-review, we will highlight recent research trend on the development of colorimetry based LFIA strips for cancer diagnosis and discuss the future research direction and potential applications.
Keywords:Cancer diseases;Biomarkers;Colorimetry;Lateral flow immunoassay;Noble metallic nanomaterials
- Hayes B, Murphy C, Crawley A, O’Kennedy R, Diagnostics, 8, 39 (2018)
- Taeb S, Mortazavi S, Ghaderi A, Mozdarani H, de Almeida C, Kardan M, Mortazavi S, Soleimani A, Nikokar I, Haghani M, J. Radiat. Res., 12, 133 (2014)
- Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K, Biosens. Bioelectron., 87, 373 (2017)
- Urdea M, Penny LA, Olmsted SS, Giovanni MY, Kaspar P, Shepherd A, Wilson P, Dahl CA, Buchsbaum S, Moeller G, Hay Burgess DC, Nature, 444, 73 (2006)
- Nguyen VT, Song S, Park S, Joo C, Biosens. Bioelectron., 152, 112015 (2020)
- Huang Y, Xu T, Wang W, Wen Y, Li K, Qian L, Zhang X, Liu G, Microchim. Acta, 187, 70 (2019)
- Wong R, Tse H, Lateral Flow Immunoassay, Springer Science & Business Media (2008).
- Li H, Han D, Hegener MA, Pauletti GM, Steckl AJ, Biomicrofluidics, 11, 024116 (2017)
- Parolo C, Sena-Torralba A, Bergua JF, Calucho E, et al., Nat. Protoc., 15, 3788 (2020)
- Mahmoudi T, de la Guardia M, Baradaran B, Trends Anal. Chem., 125, 115842 (2020)
- Moyano A, Serrano-Pertierra E, Salvador M, Martinez-Garcia JC, Rivas M, Blanco-Lopez MC, Diagnostics, 10, 288 (2020)
- Qin Z, Chan WC, Boulware DR, Akkin T, Butler EK, Bischof JC, Angew. Chem.-Int. Edit., 51, 4358 (2012)
- Yoo SI, KIC News, 15, 2 (2012)
- Paschoalino WJ, Kogikoski S, Barragan JT, Giarola JF, Cantelli L, Rabelo TM, Pessanha TM, Kubota LT, ChemElectroChem, 6, 10 (2019)
- Urusov AE, Zherdev AV, Dzantiev BB, Biosensors, 9, 89 (2019)
- Yang H, Xu W, Zhou Y, Microchim. Acta, 186, 859 (2019)
- Ye H, Xia X, J. Mater. Chem. B, 6, 7102 (2018)
- Kim DS, Choi BG, Appl. Chem. Eng., 29(1), 97 (2018)
- Sajid M, Kawde AN, Daud M, J. Saudi Chem. Soc., 19, 689 (2015)
- Rodriguez MO, Covian LB, Garcia AC, Blanco-Lopez MC, Talanta, 148, 272 (2016)
- Li Z, Chen H, Wang P, Analyst, 144, 3314 (2019)
- Shen M, Chen Y, Zhu Y, Zhao M, Xu Y, Anal. Chem., 91, 4814 (2019)
- Fernandez-Sanchez C, McNeil CJ, Rawson K, Nilsson O, Leung HY, Gnanapragasam V, J. Immunol. Methods, 307, 1 (2005)
- Gao Z, Ye H, Wang Q, Kim MJ, Tang D, Xi Z, Wei Z, Shao S, Xia X, ACS Nano, 14, 791 (2020)
- Gao Z, Ye H, Tang D, Tao J, Habibi S, Minerick A, Tang D, Xia X, Nano Lett., 17, 5572 (2017)
- You PY, Li FC, Liu MH, Chan YH, ACS Appl. Mater. Interfaces, 11, 9841 (2019)
- Lu X, Mei T, Guo Q, Zhou W, Li X, Chen J, Zhou X, Sun N, Fang Z, Microchim. Acta, 186, 2 (2018)
- Preechakasedkit P, Siangproh W, Khongchareonporn N, Ngamrojanavanich N, Chailapakul O, Biosens. Bioelectron., 102, 27 (2018)
- Yang H, He Q, Chen Y, Shen D, Xiao H, Eremin SA, Cui X, Zhao S, Microchim. Acta, 187, 592 (2020)
- Jiang T, Song Y, Du D, Liu X, Lin Y, ACS Sens., 1, 717 (2016)
- Yao Y, Gao Zhang J, Wu Y, Fu W, Liu T, Wu X, Wang H, Gong X, Liang XJ, Chang J, ACS Appl. Mater. Interfaces, 8, 22963 (2016)
- Liu F, Zhang H, Wu Z, Dong H, Zhou L, Yang D, Ge Y, Jia C, Liu H, Jin Q, Zhao J, Zhang Q, Mao H, Talanta, 161, 205 (2016)
- Na K, Jeong SK, Lee MJ, Cho SY, Kim SA, Lee MJ, Song SY, Kim H, Kim KS, Lee HW, Paik YK, Int. J. Cancer, 133, 408 (2013)
- Lee SH, Goh ES, Lee HJ, Appl. Chem. Eng., 29(6), 645 (2018)
- Fajri A, Goh ES, Lee SH, Lee HJ, Appl. Chem. Eng., 30(4), 429 (2019)
- Choi S, Chen M, Cryns VL, Anderson RA, Nat. Cell Biol., 21, 462 (2019)
- Byzova NA, Zherdev AV, Khlebtsov BN, Burov AN, Khlebtsov NG, Dzantiev BB, Sensors, 20, 3608 (2020)
- Razo SC, Panferova NA, Panferov VG, Safenkova IV, et al., Sensors, 19, 153 (2019)
- Kang J, Yeom G, Jang H, Oh J, Park CJ, Kim MG, Anal. Chem., 91, 10001 (2019)
- Kim J, Campbell AS, de Avila BEF, Wang J, Nat. Biotechnol., 37, 389 (2019)