Macromolecular Research, Vol.28, No.12, 1082-1090, November, 2020
Fibers of Ultra-High Molecular Weight Polyethylene Obtained by Gel Spinning with Polyalphaolefin Oil
E-mail:
The rapid growth of polymer technology has provided viable and more straightforward methods for the development of ultra-high molecular weight polyethylene (UHMWPE) fibers. The gel spinning process yields fibers with improved properties and less impact on the environment. The material used as a solvent for the swelling of the polymer reveals an excellent potential for the processing of new fibers. In the present work, the influence of a new spinning solvent based on polyalphaolefin (PAO100) in the UHMWPE was evaluated. All fibers were obtained by extrusion in concentrations of 0.04 to 60% m/m of PAO100 oil, with screw rotation speed increasing from 20 to 60 rpm, leaving the extruder nozzle of 1.82 mm. Besides, n-hexane was used in the process of extracting oil from UHMWPE fibers. The fibers did not undergo to the drawing process. The results show that the fibers containing 20?40% m/m of PAO100 presented higher linear density, indicating the orientation of the crystals in a compact morphology and the higher relaxation after leaving the nozzle, increasing die-swell. After extraction of PAO100 with n-hexane, huge voids were observed in SEM images, which indicates the alignment of subfibers inside the fiber. The average size of the crystallite related to the polyethylene orthorhombic crystal increased significantly, showing that the number of entanglements decreased. The results indicate that PAO100 oil acts as a lubricant, increasing the mobility of the chains, leading to higher crystallization. The present study presents exciting findings on the effects of PAO100 oil on the morphology, crystalline structures, and thermal properties of UHMWPE fibers, pointing out the oil concentration necessary for the formation of fibers with higher crystallinity and thermal resistance.
Keywords:: ultra-high molecular weight polyethylene (UHMWPE);fibers;polyalphaolefin;gel spinning;twin-screw extruder
- Khalil Y, Kowalski A, Hopkinson N, Addit. Manuf., 10, 67 (2016)
- Li D, Zhou L, Wang X, He L, Yang X, Materials, 12, 1746 (2019)
- Xiong D, Ge S, Wear, 250, 242 (2001)
- Rocha LFM, Cordeiro SB, Ferreira LC, Ramos FJH, Marques MFV, Mater. Sci. Appl., 7, 863 (2016)
- Chen Y, Nie X, Zou HW, Liang M, Liu PB, J. Appl. Polym. Sci., 130(4), 2487 (2013)
- Bracco P, Bellare A, Bistolfi A, Affatato S, Materials, 10, 791 (2017)
- Siskey R, Smelt H, Boon-Ceelen K, Persson M. in UHMWPE Biomaterials Handbook, William Andrew Publishing, p.398 2016.
- Li CS, Huang XC, Li Y, Yang N, Shen Z, Fan XH, Polym. Adv. Technol., 25, 1014 (2014)
- Samad MA, Sinha SK, Wear, 270, 395 (2011)
- Donnet C, Erdemir A, Surf. Coat. Technol., 180, 76 (2004)
- Du J, Wang Z, Yu J, Ullah S, Yang B, Li C, Xu J, Adv. Funct. Mater., 28, 170735 (2018)
- Atwood SA, Van Citters DW, Patten EW, Furmanski J, Ries MD, Pruitt LA, J. Mech. Behav. Biomed. Mater., 4, 1033 (2011)
- Shimel M, Gouzman I, Grossman E, Barkay Z, Katz S, Bolker A, Verker R, Adv. Mater. Interfaces, 5, 180029 (2018)
- Xiao MM, Yu JR, Zhu JJ, Chen L, Zhu J, Hu ZM, J. Mater. Sci., 46(17), 5690 (2011)
- Xia L, Xi P, Cheng B, Mater. Lett., 147, 79 (2015)
- Wang F, Liu L, Xue P, Jia M, Polymers, 9, 96 (2017)
- Wang J, Cao C, Yu D, Chen X, Appl. Comp. Mater., 25, 35 (2018)
- Park JH, Rutledge GC, J. Mater. Sci., 53(4), 3049 (2018)
- Wang F, Liu L, Xue P, Jia M, Sun H, J. Eng. Fiber Fabr., 13, 155892501801300304 (2018).
- Fang X, Shi J, Wyatt T, Yao D, Text. Res. J., 87, 2323 (2017)
- Baker DA, Hastings RS, Pruitt L, Polymer, 41(2), 795 (2000)
- Aguiar VO, Pita VJ, Marques MDFV, J. Appl. Polym. Sci., 136, 47459 (2019)
- Aliyu IK, Mohammed AS, Al-Qutub A, Polym. Compos., 40, E1301 (2019)
- Wyatt TP, Chien AT, Kumar S, Yao DG, Polym. Eng. Sci., 54(12), 2839 (2014)
- Deitzel JM, McDaniel P, Gillespie JW, in Structure and Properties of High-Performance Fibers, Woodhead Publishing, p167 2017.
- Shi X, Bin Y, Hou D, Men Y, Matsuo M, Polym. J., 46, 21 (2014)
- Xu HJ, An MF, Lv Y, Zhang L, Wang ZB, Polym. Bull., 74(3), 721 (2017)
- An MF, Lv Y, Xu HJ, Gu Q, Wang ZB, Chinese J. Polym. Sci., 35, 524 (2017)
- Fang XD, Wyatt T, Shi J, Yao DG, J. Mater. Sci., 53(16), 11901 (2018)
- Li W, Huang M, Ma R, Polym. Adv. Technol., 29, 1287 (2018)
- Wu Z, Zhang Z, Mai K, J. Therm. Anal. Calorim., 139, 1111 (2020)
- Li N, Lu Q, Yin W, Xiao C, Li J, J. Membr. Sci., 595, 117527 (2020)
- Benda R, Bullen J, Plomer A, J. Synthetic Lubric., 13, 41 (1996)
- Van der Werff H, Heisserer U, in Advanced Fibrous Composite Materials for Ballistic Protection, Woodhead Publishing, p.71 2016.
- Quijada R, Narvaez A, Dal Pizzol M, Liberman S, Arli A, Galland GB, J. Appl. Polym. Sci., 79(2), 221 (2001)
- Fang L, Gao P, Leng Y, Compos. Part B: Eng., 38, 345 (2007)
- Joo YL, Han OH, Lee HK, Song JK, Polymer, 41(4), 1355 (2000)
- Jaggi HS, Kumar S, Das D, Satapathy BK, Ray AR, J. Appl. Polym. Sci., 132, 41251 (2015)
- McDaniel PB, Deitzel JM, Gillespie JW, Polymer, 69, 148 (2015)
- Maghsoud Z, Moaddel H, Iranian Polym. J., 16, 363 (2007)
- Zherebtsov D, Chukov D, Statnik E, Torokhov V, Materials, 13, 1739 (2020)
- Zhou L, Wang X, Zhang Y, Zhang P, Li Z, Materials, 12, 2657 (2019)
- Zheng L, Waddon AJ, Farris RJ, Coughlin EB, Macromolecules, 35(6), 2375 (2002)
- Kurelec L, Rastogi S, Meier RJ, Lemstra PJ, Macromolecules, 33(15), 5593 (2000)
- Xinwei W, Han Z, Yongfei S, J. Polym. Eng., 38, 1 (2018)
- WanG F, Liu L, Xue P, Jia M, Polymers, 9, 96 (2017)
- Loomis J, Ghasemi H, Huang X, Thoppey N, Wang J, Tong JK, Xu Y, Li X, Lin CT, Chen G, Technology, 2, 189 (2014)
- Ronca S, Igarashi T, Forte G, Rastogi S, Polymer, 123, 203 (2017)
- Lee SM, Jeon HJ, Choi SW, Song HH, Nho YC, Cho K, Macromol. Res., 14(6), 640 (2006)
- Guo Y, Leung SN, AIP Adv., 8, 045126 (2018)