화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.91, 69-78, November, 2020
Characterization of intermediate wetting states on micro-grooves by water droplet contact line
E-mail:
The wetting state of a water droplet remarkably affecting its sliding behavior is characterized by the droplet boundary contact line. This paper presents experimental studies of the apparent contact angle against droplet deposition time, as well as contact angle hysteresis, and compares the results with the Wenzel and Cassie?Baxter models. Observations indicate that different intermediate wetting phenomena exist. The sliding performance of a droplet under intermediate wetting states is also investigated. It is found that the droplet does not slide under partial wetting but slides when the side walls of the grooves have been wetted by part of the droplet. Further, that droplets under different wetting states on surfaces with varied groove spacing and widths, under the same groove spacing to width ratio, present altered sliding performance before rolling off from the micro-grooves in a parallel direction. This study broadens the characterization method of intermediate wetting states, which determines the condition of anisotropic sliding on micro-grooves. The findings have great potential for application to artificial self-cleaning surfaces.
  1. (a) Sahoo BN, Kandasubramanian B, Rsc Adv., 4, 22053 (2014); (b) Celia E, et al., J. Colloid Interface Sci., 402, 1 (2013); (c) Xia DY, et al., Adv. Mater., 24, 1287 (2012).
  2. (a) Bormashenko E, Adv. Colloid Interface Sci., 222, 92 (2015); (b) Bhushan B, Jung YC, Prog. Mater. Sci., 56, 1 (2011).
  3. (a) Wang S, Jiang L, Adv. Mater., 19, 3423 (2007); (b) Quere D, Rep. Prog. Phys., 68, 2495 (2005); (c) Lafuma A, Quere D, Nat. Mater., 2, 457 (2003).
  4. Feng L, Zhang YA, Xi JM, Zhu Y, Wang N, Xia F, Jiang L, Langmuir, 24(8), 4114 (2008)
  5. Yong JL, Yang Q, Chen F, Zhang DS, Farooq U, Du GQ, Hou X, J. Mater. Chem. A, 2, 5499 (2014)
  6. (a) Li XY, Ma XH, Lan Z, Langmuir, 26, 4831 (2010); (b) Jung YC, Bhushan B, Scr. Mater., 57, 1057 (2007).
  7. Chen Y, He B, Lee JH, Patankar NA, J. Colloid Interface Sci., 281(2), 458 (2005)
  8. Murakami D, Jinnai H, Takahara A, Langmuir, 30(8), 2061 (2014)
  9. Park CI, Jeong HE, Lee SH, Cho HS, Suh KY, J. Colloid Interface Sci., 336(1), 298 (2009)
  10. Zhao H, Law KY, Langmuir, 28(32), 11821 (2012)
  11. (a) Ren WQ, Langmuir, 30, 2879 (2014); (b) Song D, et al., Appl. Therm. Eng., 85, 356 (2015).
  12. (a) Meiron TS, et al., J. Colloid Interface Sci., 274, 637 (2004); (b) Marmur A, Soft Matter., 2, 12 (2006); (c) Bormashenko E, et al., Langmuir, 23, 12217 (2007); (d) Bormashenko E, et al., Langmuir, 23, 6501(2007).
  13. Neuhaus S, Spencer ND, Padeste C, ACS Appl. Mater. Interfaces., 4, 123 (2012)
  14. Choi W, Tuteja A, Mabry JM, Cohen RE, McKinley GH, J. Colloid Interface Sci., 339(1), 208 (2009)
  15. (a) Dubov AL, et al., J. Chem. Phys., 141, 7 (2014); (b) Dubov AL, et al., Appl. Phys. Lett., 106, 4 (2015); (c) Gauthier A, et al., Phys. Rev. Lett., 110, 5 (2013); (d) Sbragaglia M, et al., Phys. Rev. E, 89, 12 (2014).
  16. Liu SH, Liu XJ, Latthe SS, Gao L, An S, Yoon SS, Liu BS, Xing RM, Appl. Surf. Sci., 351, 897 (2015)
  17. (a) Gao LC, McCarthy TJ, Langmuir, 25, 14 (2009); (b) Gao LC, McCarthy TJ, Langmuir, 23, 3762 (2007); (c) Erbil HY, Surf. Sci. Rep., 69, 325 (2014).
  18. Zhao H, Law KY, Sambhy V, Langmuir, 27(10), 5927 (2011)
  19. Ma CH, Bai SX, Peng XD, Meng YG, Appl. Surf. Sci., 284, 930 (2013)
  20. (a) Rukosuyev MV, et al., Appl. Surf. Sci., 313, 411 (2014); (b) Davaasuren et al., Appl. Surf. Sci., 314, 530 (2014); (c) Vinogradova OI, Belyaev AV, J. Phys.: Condens. Matter., 23, 15 (2011); (d) Ge P, et al., Adv. Mater. Interfaces., 4, 9 (2017); (e) Long JY, et al., Adv. Mater. Interfaces., 3, 8 (2016).
  21. Cheng CT, Zhang GQ, To S, Rsc Adv., 6, 1562 (2016)
  22. Extrand CW, Langmuir, 19(9), 3793 (2003)
  23. (a) Li P, et al., Appl. Surf. Sci., 335, 29 (2015); (b) Zhang PC et al., Adv. Mater., 26, 3131 (2014); (c) Liang YD, et al., Appl. Surf. Sci., 331, 41 (2015). (d) Chen F, et al., Langmuir, 27, 359 (2011); (e) Lee SG, et al., Adv. Funct. Mater., 23, 547 (2013).
  24. Tanaka D, Buenger D, Hildebrandt H, Moeller M, Groll J, Langmuir, 29(40), 12331 (2013)
  25. Kooij ES, Jansen HP, Bliznyuk O, Poelsema B, Zandvliet HJW, Colloids Surf. A: Physicochem. Eng. Asp., 413, 328 (2012)
  26. (a) Tie, et al., J. Colloid Interface Sci., 453, 142 (2015); (b) Jansen HP, et al., Int. J. Heat Mass Transfer., 82, 537 (2015); (c) Li W, et al., J. Phys. Chem. B, 112, 7234 (2008); (d) Chung JY, et al., Soft Matter., 3, 1163 (2007).
  27. (a) Jiang Y, et al., Chem. Phys., 429, 44 (2014); (b) David R, Neumann AW, Colloids Surf. A, 399, 41 (2012); (c) Jansen HP, et al., Langmuir, 28, 499 (2012).
  28. Luo C, Xiang MM, Liu XC, Wang H, Microfluid. Nanofluid., 10, 831 (2011)
  29. Marmur A, Annu. Rev. Mater. Res., Vol. 39, Annual Reviews, Palo Alto, pp.473 2009.
  30. Wenzel RN, Ind. Eng. Chem., 28, 988 (1936)
  31. Cassie ABD, Baxter S, Trans. Faraday Soc., 40, 546 (1944)
  32. Sommers AD, Jacobi AM, J. Colloid Interface Sci., 328(2), 402 (2008)
  33. Reyssat M, Yeomans JM, Quere D, Epl 81, 5 (2008).
  34. Jena RK, Yue CY, Biomicrofluidics, 6, 12 (2012)
  35. Zhang FX, Low HY, Langmuir, 23(14), 7793 (2007)
  36. Lv CJ, Yang CW, Hao PF, He F, Zheng QS, Langmuir, 26(11), 8704 (2010)
  37. (a) Miwa M, et al., Langmuir, 16, 5754 (2000); (b) Yoshimitsu Z, et al., Langmuir, 18, 5818 (2002).
  38. McHale G, Newton MI, Shirtcliffe NJ, J. Phys. Condens. Matter, 21, 11 (2009)
  39. Bhushan B, Jung YC, Koch K, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 367, 1631 (2009)
  40. Nosonovsky M, J. Chem. Phys., 126, 6 (2007)
  41. (a) Shirtcliffe NJ, et al., Langmuir, 21, 937 (2005); (b) Patankar NA, Langmuir, 19, 1249 (2003).