Macromolecular Research, Vol.28, No.13, 1248-1252, December, 2020
Improved Electron Transport in Ambipolar Organic Field-Effect Transistors with PMMA/Polyurethane Blend Dielectrics
E-mail:,
We report improved electron transport in solution-processed ambipolar organic field-effect transistors (OFETs) employing polymer dielectric blends of low-k poly(methyl methacrylate) (PMMA) and polyurethane (PU) elastomer. Ambipolar poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) OFETs typically showed an unbalanced hole and electron mobilities of 8.7 ± 0.4 × 10-4 and 2.0±0.1×10-4 cm2V-1s-1 respectively, using neat PMMA gate dielectric. By controlling the blending ratio of PU (0~50 v%) in the PMMA-PU blend dielectrics, we tuned the charge carrier transport in the F8BT OFETs. The electron mobility gradually increases significantly, resulting in nearly perfect ambipolar characteristics with hole and electron mobilities of 6.0 ±0.7× 10-4 and 9.7±0.4×10-4 cm2V-1s-1 respectively in PMMA: PU blend of 50:50 v%. The remarkable trend ensues from trapping of hole carriers at the dielectric/semiconductor by the -N-H- and carbonyl group (C=O) interface dipoles in the PU dielectric. The PMMA-PU blend dielectrics demonstrate excellent potentials for high-performance ambipolar OFETs, inverters, and complementary circuits.
Keywords:organic field-effect transistors;polyurethane;polymer dielectric blend;ambipolar polymer semiconductor;PMMA
- Wang BH, Huang W, Chi LF, Al-Hashimi M, Marks TJ, Facchetti A, Chem. Rev., 118(11), 5690 (2018)
- Kim SH, Lee JH, Han HS, Macromol. Res., 28(10), 896 (2020)
- Nketia-Yawson B, Noh YY, Adv. Funct. Mater., 28, 180220 (2018)
- Zhu H, Shin ES, Liu A, Ji D, Xu Y, Noh YY, Adv. Funct. Mater., 1904588 (2019).
- Kim J, Jung HT, Ha S, Yi M, Park JE, Kim H, Choi Y, Pyo S, Macromol. Res., 17(9), 646 (2009)
- Kraft U, Sejfic M, Kang MJ, Takimiya K, Zaki T, Letzkus F, Burghartz JN, Weber E, Klauk H, Adv. Mater., 27(2), 207 (2015)
- Liu J, Buchholz DB, Chang RPH, Facchetti A, Marks TJ, Adv. Mater., 22(21), 2333 (2010)
- Kim SH, Hong K, Xie W, Lee KH, Zhang SP, Lodge TP, Frisbie CD, Adv. Mater., 25(13), 1822 (2013)
- Wu X, Huang J, Yu S, Ruan P, Sun R, Wong CP, Macromol. Res., 28(4), 373 (2020)
- Higazy AA, Afifi H, Khafagy AH, El-Shahawy MA, Mansourc AM, Ultrasonics, 44, e1439 (2006)
- Seo JY, Oh ST, Choi GH, Cho HH, Lee HS, Macromol. Res., 28(7), 670 (2020)
- Hou X, Ng SC, Zhang J, Chang JS, Org. Electron., 17, 247 (2015)
- Jung SW, Yoon SM, Kang SY, You IK, Koo JB, Baeg KJ, Noh YY, Curr. Appl. Phys., 11(3), S213 (2011)
- Shin EY, Cho HJ, Jung S, Yang C, Noh YY, Adv. Funct. Mater., 28, 170478 (2018)
- Baeg KJ, Khim D, Jung SW, Kang M, You IK, Kim DY, Facchetti A, Noh YY, Adv. Mater., 24(40), 5433 (2012)
- Baeg KJ, Khim D, Kim J, Han H, Jung SW, Kim TW, Kang M, Facchetti A, Hong SK, Kim DY, Noh YY, ACS Appl. Mater. Interfaces, 4, 6176 (2012)
- Nketia-Yawson B, Kang SJ, Tabi GD, Perinot A, Caironi M, Facchetti A, Noh YY, Adv. Mater., 29, 160568 (2017)
- Kim SH, Hong K, Jang M, Jang J, Anthony JE, Yang H, Park CE, Adv. Mater., 22(43), 4809 (2010)
- Patricio PSO, de Sales JA, Silva GG, Windmoller D, Machado JC, J. Membr. Sci., 271(1-2), 177 (2006)
- Fu S, Zhu J, Chen S, Macromol. Res., 26(11), 1035 (2018)
- Xu CA, Lu M, Wu K, Shi J, Macromol. Res., 28(11), 1032 (2020)