화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.95, 235-243, March, 2021
NaHCO3/Na2CO3 as an inhibitor of chloride-induced mild steel corrosion in cooling water: Electrochemical evaluation
E-mail:
This study systematically investigated the inhibition mechanism of NaHCO3 for mild steel corrosion in a 0.02 M naturally aerated NaCl solution at 40 C (simulating cooling water) and the critical bicarbonate/ chloride molar ratio (RC) using visual observations, potentiodynamic polarization curves, and electrochemical impedance spectroscopy. The corrosion mechanism of an anodic passive film formed with 0.20.0.40 M NaHCO3 (RC = 10) was controlled by a combination of passivation, diffusion, and charge transfer processes. Electrochemical impedance spectroscopy results showed that, compared to 0.20. 0.24 M NaHCO3, a higher NaHCO3 concentration may affect the stability of the passive film. A higher chloride concentration of 0.08 M achieved by a higher concentration cycle in the cooling water system resulted in a lower RC value of 7.5 for NaHCO3. Both NaHCO3 and Na2CO3 showed an identical corrosion mechanism; moreover, the inhibitory effect of Na2CO3 was not dependent on its alkaline pH. Taken together, these findings show the remarkable potential of NaHCO3/Na2CO3 as a commercially available, comparatively cheap, and environmentally acceptable (i.e., no organic pollution, toxicity, or eutrophication risks after discharge) corrosion inhibitor for mild steel in cooling water systems.
  1. Cui J, Yuan WJ, Yuan DH, Pei YS, Ind. Eng. Chem. Res., 56(25), 7239 (2017)
  2. Hsieh MK, Dzombak DA, Vidie RD, Ind. Eng. Chem. Res., 49(19), 9117 (2010)
  3. Saremi M, Dehghanian C, Sabet MM, Corrosion Sci., 48, 1404 (2006)
  4. Su WN, Tian YM, Peng S, Appl. Surf. Sci., 315, 95 (2014)
  5. Li H, Hsieh MK, Chien SH, Monnell JD, Dzombak DA, Vidic RD, Water Res., 45, 748 (2011)
  6. Ortiz MR, Rodriguez MA, Carranza RM, Rebak RB, Corrosion Sci., 68, 72 (2013)
  7. Deyab MA, Eddahaoui K, Essehli R, Rhadfi T, Benmokhtar S, Mele G, Desalination, 383, 38 (2016)
  8. Valcarce MB, Vazquez M, Electrochim. Acta, 53(15), 5007 (2008)
  9. Daoud D, Douadi T, Hamani H, Chafaa S, Al-Noaimi M, Corrosion Sci., 94, 21 (2015)
  10. Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B, Sanaei Z, J. Ind. Eng. Chem., 77, 323 (2019)
  11. Fatima S, Sharma R, Asghar F, Kamal A, Badshah A, Kraatz HB, J. Ind. Eng. Chem., 76, 374 (2019)
  12. Tan B, Zhang S, Li W, Zuo X, Qiang Y, Xu L, Hao J, Chen S, J. Ind. Eng. Chem., 77, 449 (2019)
  13. Dohare P, Ansari KR, Quraishi MA, Obot IB, J. Ind. Eng. Chem., 52, 197 (2017)
  14. Verma C, Ebenso EE, Quraishi MA, J. Mol. Liq., 248, 927 (2017)
  15. Zhong HY, Shi ZM, Jiang GM, Yuan ZG, Water Res., 172, 115470 (2020)
  16. Zhou YT, Xu AN, Mao FX, Yu JK, Kong DC, Dong CF, Macdonald DD, Electrochim. Acta, 320, 134545 (2019)
  17. Refaey SAM, Abd El-Rehim SS, Taha F, Saleh MB, Ahmed RA, Appl. Surf. Sci., 158(3-4), 190 (2000)
  18. Krolikowski A, Kuziak J, Electrochim. Acta, 56(23), 7845 (2011)
  19. Eliyan FF, Mahdi ES, Alfantazi A, Corrosion Sci., 58, 181 (2012)
  20. Mao X, Liu X, Revie RW, Corrosion, 50, 651 (1994)
  21. Valcarce MB, Vazquez M, Mater. Chem. Phys., 115(1), 313 (2009)
  22. Fattah-alhosseini A, Golozar MA, Saatchi A, Raeissi K, Corrosion Sci., 52, 205 (2010)
  23. Reffass M, Sabot R, Savall C, Jeannin M, Creus J, Refait P, Corrosion Sci., 48, 709 (2006)
  24. Tan YT, Wijesinghe SL, Blackwood DJ, Corrosion Sci., 88, 152 (2014)
  25. El Meguid EAA, El Latif AAA, Corrosion Sci., 46, 2431 (2004)
  26. Singh AK, Shukla SK, Singh M, Quraishi MA, Mater. Chem. Phys., 129(1-2), 68 (2011)
  27. Cui J, Yang YG, Li XQ, Yuan WJ, Pei YS, ACS Appl. Mater. Interfaces, 10, 4183 (2018)
  28. Eyu GD, Will G, Dekkers W, J. MacLeod, Materials, 9, 1 (2016)
  29. Ahamad I, Prasad R, Quraishi MA, Corrosion Sci., 52, 933 (2010)
  30. Alves VA, Brett CMA, Electrochim. Acta, 47(13-14), 2081 (2002)
  31. Eghbali F, Moayed MH, Davoodi A, Ebrahimi N, Corrosion Sci., 53, 513 (2011)
  32. Matter EA, Kozhukharov S, Machkova M, Kozhukharov V, Corrosion Sci., 62, 22 (2012)
  33. Gutierrez E, Rodriguez JA, Cruz-Borbolla J, Alvarado-Rodriguez JG, Thangarasu P, Corrosion Sci., 108, 23 (2016)
  34. Deodeshmukh V, Venugopal A, Chandra D, Yilmaz A, Daemen J, Jones DA, Lea S, Engelhard M, Corrosion Sci., 46, 2629 (2004)
  35. Mishra AK, Balasubramaniam R, Mater. Chem. Phys., 103(2-3), 385 (2007)
  36. Hosseini M, Mertens SFL, Ghorbani M, Arshadi MR, Mater. Chem. Phys., 78(3), 800 (2003)
  37. Boissy C, Ter-Ovanessian B, Mary N, Normand B, Electrochim. Acta, 174, 430 (2015)
  38. Chen C, Wang Y, Liu S, Feng R, Gu X, Qiao C, Water Sci. Technol., 80, 1763 (2019)
  39. Choudhury MR, Hsieh MK, Vidic RD, Dzombak DA, Corrosion Sci., 61, 231 (2012)
  40. Rout PR, Bhunia P, Dash RR, Bioresour. Technol., 244, 484 (2017)
  41. Chhim N, Kharbachi C, Neveux T, Bouteleux C, Teychene S, Biscans B, J. Cryst. Growth, 472, 35 (2017)
  42. Abdel-Gaber AM, Abd-El-Nabey BA, Khamis E, Abd-El-Rhmann H, Aglan H, Ludwick A, Int. J. Electrochem. Sci., 7, 11930 (2012)