Journal of Industrial and Engineering Chemistry, Vol.95, 235-243, March, 2021
NaHCO3/Na2CO3 as an inhibitor of chloride-induced mild steel corrosion in cooling water: Electrochemical evaluation
E-mail:
This study systematically investigated the inhibition mechanism of NaHCO3 for mild steel corrosion in a 0.02 M naturally aerated NaCl solution at 40 C (simulating cooling water) and the critical bicarbonate/ chloride molar ratio (RC) using visual observations, potentiodynamic polarization curves, and electrochemical impedance spectroscopy. The corrosion mechanism of an anodic passive film formed with 0.20.0.40 M NaHCO3 (RC = 10) was controlled by a combination of passivation, diffusion, and charge transfer processes. Electrochemical impedance spectroscopy results showed that, compared to 0.20. 0.24 M NaHCO3, a higher NaHCO3 concentration may affect the stability of the passive film. A higher chloride concentration of 0.08 M achieved by a higher concentration cycle in the cooling water system resulted in a lower RC value of 7.5 for NaHCO3. Both NaHCO3 and Na2CO3 showed an identical corrosion mechanism; moreover, the inhibitory effect of Na2CO3 was not dependent on its alkaline pH. Taken together, these findings show the remarkable potential of NaHCO3/Na2CO3 as a commercially available,
comparatively cheap, and environmentally acceptable (i.e., no organic pollution, toxicity, or
eutrophication risks after discharge) corrosion inhibitor for mild steel in cooling water systems.
Keywords:Eco-friendly corrosion inhibitor;Bicarbonate/carbonate;Mild steel;Anodic passive film;Potentiodynamic polarization;Electrochemical impedance spectroscopy
- Cui J, Yuan WJ, Yuan DH, Pei YS, Ind. Eng. Chem. Res., 56(25), 7239 (2017)
- Hsieh MK, Dzombak DA, Vidie RD, Ind. Eng. Chem. Res., 49(19), 9117 (2010)
- Saremi M, Dehghanian C, Sabet MM, Corrosion Sci., 48, 1404 (2006)
- Su WN, Tian YM, Peng S, Appl. Surf. Sci., 315, 95 (2014)
- Li H, Hsieh MK, Chien SH, Monnell JD, Dzombak DA, Vidic RD, Water Res., 45, 748 (2011)
- Ortiz MR, Rodriguez MA, Carranza RM, Rebak RB, Corrosion Sci., 68, 72 (2013)
- Deyab MA, Eddahaoui K, Essehli R, Rhadfi T, Benmokhtar S, Mele G, Desalination, 383, 38 (2016)
- Valcarce MB, Vazquez M, Electrochim. Acta, 53(15), 5007 (2008)
- Daoud D, Douadi T, Hamani H, Chafaa S, Al-Noaimi M, Corrosion Sci., 94, 21 (2015)
- Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B, Sanaei Z, J. Ind. Eng. Chem., 77, 323 (2019)
- Fatima S, Sharma R, Asghar F, Kamal A, Badshah A, Kraatz HB, J. Ind. Eng. Chem., 76, 374 (2019)
- Tan B, Zhang S, Li W, Zuo X, Qiang Y, Xu L, Hao J, Chen S, J. Ind. Eng. Chem., 77, 449 (2019)
- Dohare P, Ansari KR, Quraishi MA, Obot IB, J. Ind. Eng. Chem., 52, 197 (2017)
- Verma C, Ebenso EE, Quraishi MA, J. Mol. Liq., 248, 927 (2017)
- Zhong HY, Shi ZM, Jiang GM, Yuan ZG, Water Res., 172, 115470 (2020)
- Zhou YT, Xu AN, Mao FX, Yu JK, Kong DC, Dong CF, Macdonald DD, Electrochim. Acta, 320, 134545 (2019)
- Refaey SAM, Abd El-Rehim SS, Taha F, Saleh MB, Ahmed RA, Appl. Surf. Sci., 158(3-4), 190 (2000)
- Krolikowski A, Kuziak J, Electrochim. Acta, 56(23), 7845 (2011)
- Eliyan FF, Mahdi ES, Alfantazi A, Corrosion Sci., 58, 181 (2012)
- Mao X, Liu X, Revie RW, Corrosion, 50, 651 (1994)
- Valcarce MB, Vazquez M, Mater. Chem. Phys., 115(1), 313 (2009)
- Fattah-alhosseini A, Golozar MA, Saatchi A, Raeissi K, Corrosion Sci., 52, 205 (2010)
- Reffass M, Sabot R, Savall C, Jeannin M, Creus J, Refait P, Corrosion Sci., 48, 709 (2006)
- Tan YT, Wijesinghe SL, Blackwood DJ, Corrosion Sci., 88, 152 (2014)
- El Meguid EAA, El Latif AAA, Corrosion Sci., 46, 2431 (2004)
- Singh AK, Shukla SK, Singh M, Quraishi MA, Mater. Chem. Phys., 129(1-2), 68 (2011)
- Cui J, Yang YG, Li XQ, Yuan WJ, Pei YS, ACS Appl. Mater. Interfaces, 10, 4183 (2018)
- Eyu GD, Will G, Dekkers W, J. MacLeod, Materials, 9, 1 (2016)
- Ahamad I, Prasad R, Quraishi MA, Corrosion Sci., 52, 933 (2010)
- Alves VA, Brett CMA, Electrochim. Acta, 47(13-14), 2081 (2002)
- Eghbali F, Moayed MH, Davoodi A, Ebrahimi N, Corrosion Sci., 53, 513 (2011)
- Matter EA, Kozhukharov S, Machkova M, Kozhukharov V, Corrosion Sci., 62, 22 (2012)
- Gutierrez E, Rodriguez JA, Cruz-Borbolla J, Alvarado-Rodriguez JG, Thangarasu P, Corrosion Sci., 108, 23 (2016)
- Deodeshmukh V, Venugopal A, Chandra D, Yilmaz A, Daemen J, Jones DA, Lea S, Engelhard M, Corrosion Sci., 46, 2629 (2004)
- Mishra AK, Balasubramaniam R, Mater. Chem. Phys., 103(2-3), 385 (2007)
- Hosseini M, Mertens SFL, Ghorbani M, Arshadi MR, Mater. Chem. Phys., 78(3), 800 (2003)
- Boissy C, Ter-Ovanessian B, Mary N, Normand B, Electrochim. Acta, 174, 430 (2015)
- Chen C, Wang Y, Liu S, Feng R, Gu X, Qiao C, Water Sci. Technol., 80, 1763 (2019)
- Choudhury MR, Hsieh MK, Vidic RD, Dzombak DA, Corrosion Sci., 61, 231 (2012)
- Rout PR, Bhunia P, Dash RR, Bioresour. Technol., 244, 484 (2017)
- Chhim N, Kharbachi C, Neveux T, Bouteleux C, Teychene S, Biscans B, J. Cryst. Growth, 472, 35 (2017)
- Abdel-Gaber AM, Abd-El-Nabey BA, Khamis E, Abd-El-Rhmann H, Aglan H, Ludwick A, Int. J. Electrochem. Sci., 7, 11930 (2012)