화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.95, 325-332, March, 2021
Core and dopant effects toward hydrogen gas sensing activity using Pd@N-CeO2 core.shell nanoflatforms
E-mail:,
Developing efficient and stable hydrogen gas sensors may be of urgent demand for its safety uses. Herein, Pd@N-CeO2 core.shell nanoflatforms (CSNFs) are fabricated and utilized for this purpose. The resulting Pd@N-CeO2 CSNFs offer small particle sizes with high Brunauer-Emmett-Teller (BET) surface area and porous nanostructures. The core.shell sensors establish high hydrogen sensing response and fast response and recovery times at a lower optimal working temperature compared to undoped and doped CeO2 ones. In addition, it further demonstrates high selectivity and stability toward hydrogen gas among interfering different target gases. The hydrogen gas sensing betterment is synergistically assigned to Pd core, N dopant, and high BET surface area effects, which decidedly modulate the electrical resistance of core.shell sensors to improve overall gas sensing performance accordingly. Our finding provides an efficient way to design and fabricate versatile hydrogen gas sensors based on metal@nitrogen dopedsemiconductor oxide core.shell nanostructures.
  1. Weber M, Kim JH, Lee JH, Kim JY, Iatsunskyi I, Coy E, Drobek M, Julbe A, Bechelany M, Kim SS, ACS Appl. Mater. Interfaces, 10, 34765 (2018)
  2. Dao DV, Nguyen TTD, Le TD, Kim SH, Yang JK, Lee IH, Yu YT, J. Mater. Chem. A, 8, 7687 (2020)
  3. Reddy CS, Zhang L, Qiu Y, Chen Y, Reddy AS, Reddy PS, Dugasani SR, J. Ind. Eng. Chem., 63, 411 (2018)
  4. Turner JA, Science, 305, 972 (2004)
  5. Cho SY, Ahn H, Park K, Choi J, Kang H, Jung HT, ACS Sens., 3, 1876 (2018)
  6. Gu H, Wang Z, Hu YJS, Sensors, 12, 5517 (2012)
  7. Liao L, Mai HX, Yuan Q, Lu HB, Li JC, Liu C, Yan CH, Shen ZX, Yu T, J. Phys. Chem. C, 112, 9061 (2008)
  8. Piotrowski MJ, Tereshchuk P, Da Silva JLF, J. Phys. Chem. C, 118, 21438 (2014)
  9. Joe W, Lee HJ, Hong UG, Ahn YS, Song CJ, Kwon BJ, Song IK, J. Ind. Eng. Chem., 18(3), 1018 (2012)
  10. Hossain MA, Son CJ, Lim SW, J. Ind. Eng. Chem., 65, 418 (2018)
  11. Zhang J, Kumagai H, Yamamura K, Ohara S, Takami S, Morikawa A, Shinjoh H, Kaneko K, Adschiri T, Suda A, Nano Lett., 11, 361 (2011)
  12. Park JH, Kim WS, Jo DH, Kim JS, Park JM, J. Ind. Eng. Chem., 20(4), 1965 (2014)
  13. Jeong DW, Jang WJ, Na HS, Shim JO, Jha A, Roh HS, J. Ind. Eng. Chem., 27, 35 (2015)
  14. Ensafi AA, Mahmoodi A, Rezaei B, Sens. Actuators B-Chem., 296, 126683 (2019)
  15. Hu Q, Huang B, Li Y, Zhang S, Zhang Y, Hua X, Liu G, Li B, Zhou J, Xie E, Zhang Z, Sens. Actuators B-Chem., 307, 127638 (2020)
  16. Dao DV, Nguyen TTD, Majhi SM, Adilbish G, Lee HJ, Yu YT, Lee IH, Mater. Chem. Phys., 231, 1 (2019)
  17. Chen YJ, Xiao G, Wang TS, Zhang F, Ma Y, Gao P, Zhu CL, Zhang E, Xu Z, Li QH, Sens. Actuators B-Chem., 156, 867 (2011)
  18. Choi IA, Kwak DH, Han SB, Park KW, J. Ind. Eng. Chem., 63, 112 (2018)
  19. Lee JY, Park J, Cho JH, Appl. Phys. Lett., 87, 011904 (2005)
  20. Iqbal I, Shah NS, Sayed M, Ali Khan J, Muhammad N, Khan ZUH, Saif ur R, et al., Chem. Eng. J., 394, 124869 (2020)
  21. Khan F, Kim JH, J. Ind. Eng. Chem., 68, 129 (2018)
  22. Nguyen TTD, Van Dao D, Lee IH, Yu YT, J. Alloys Compd., 157280 (2020).
  23. Le HJ, Van Dao D, Yu YT, J. Mater. Chem. A, 8, 12968 (2020)
  24. Yadav AA, Lokhande AC, Kim JH, Lokhande CD, J. Ind. Eng. Chem., 49, 76 (2017)
  25. Kim W, Jang B, Lee HS, Lee W, Sens. Actuators B-Chem., 224, 547 (2016)
  26. Dao DV, Le TD, Adibish G, Lee IH, Yu YT, J. Mater. Chem. A, 7, 26996 (2019)
  27. Kang MJ, Kim YH, J. Ind. Eng. Chem., 86, 61 (2020)
  28. Babu B, Harish VVN, Koutavarapu R, Shim JS, Yoo KS, J. Ind. Eng. Chem., 76, 476 (2019)
  29. Park YG, Lee JH, J. Ind. Eng. Chem., 90, 312 (2020)
  30. Joo JW, Choi YH, Suh YH, Lee CL, Bae JW, Park JN, J. Ind. Eng. Chem., 88, 106 (2020)
  31. Cimino S, Lisi L, Totarella G, Barison S, Musiani M, Verlato E, J. Ind. Eng. Chem., 66, 404 (2018)
  32. Dao DV, Nguyen TTD, Le TD, Yoon JM, Lee IH, Yu YT, New J. Chem. (2020).
  33. Prabhakaran V, Ramani V, J. Electrochem. Soc., 161, F1 (2013)
  34. Fujiwara K, Muller U, Pratsinis SE, ACS Catal., 6, 1887 (2016)
  35. Wen B, Sun Q, Sachtler WMH, J. Catal., 204, 314 (2001)
  36. Mukri BD, Dutta G, Waghmare UV, Hegde MS, Chem. Mater., 24, 4491 (2012)
  37. Van Dao D, Nguyen TTD, Song HY, Yang JK, Kim TW, Yu YT, Lee IH, Mater. Des., 159, 186 (2018)
  38. Li Y, Deng D, Chen N, Xing X, Liu X, Xiao X, Wang Y, J. Alloy. Compd., 710, 2016 (2017)
  39. Choi SJ, Chattopadhyay S, Kim JJ, Kim SJ, Tuller HL, Rutledge GC, Kim ID, Nanoscale, 8, 9159 (2016)
  40. Huang BR, Lin JC, Sens. Actuators B-Chem., 174, 389 (2012)
  41. Kathiravan D, Huang BR, Saravanan A, ACS Appl. Mater. Interfaces, 9, 12064 (2017)
  42. Borhaninia A, Nikfarjam A, Salehifar N, Trans. Non. Met. Soc. China, 27, 1777 (2017)
  43. Bie LJ, Yan XN, Yin J, Duan YQ, Yuan ZH, Sens. Actuators B-Chem., 126, 604 (2007)
  44. Zeng W, Liu T, Liu D, Han E, Sens. Actuators B-Chem., 160, 455 (2011)
  45. Kim MJ, Kim KH, Yang X, Yu YH, Lee YS, J. Ind. Eng. Chem., 76, 181 (2019)
  46. Cheng JP, Wang J, Li QQ, Liu HG, Li Y, J. Ind. Eng. Chem., 44, 1 (2016)
  47. Kim MJ, Lee SM, Lee KM, Jo HJ, Choi SS, Lee YS, J. Ind. Eng. Chem., 60, 341 (2018)
  48. Nguyen TTD, Van Dao D, Kim DS, Lee HJ, Oh SY, Lee IH, Yu YT, J. Colloid Interface Sci., 587, 252 (2020)
  49. Wen W, Wu JM, Wang YD, Sens. Actuators B-Chem., 1848, 78 (2013)
  50. Hassan K, Chung GS, Sens. Actuators B-Chem., 239, 824 (2017)