화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.2, 253-260, March, 2021
용액 침전법에 의한 SLS 3-D 프린팅용 폴리프로필렌 파우더 개발
Development of Polypropylene Powder for SLS 3-D Printing by Solution Precipitation Method
E-mail:
초록
폴리프로필렌/폴리에틸렌(PP/PE) 공중합체를 용액 침전법에 의하여 selective laser sintering(SLS) 3-D 프린팅이 가능한 분말로 제조 후, 이를 상업용 SLS 3-D 프린팅용 폴리프로필렌(PP) 분말에 바인더로 사용하였다. 첨가된 PP/PE 공중합체 분말이 상업용 PP 분말의 흐름특성과 SLS 3-D 프린팅 가공 윈도우에 미치는 영향을 살펴보았다. 제조된 PP/PE 공중합체 분말은 구형으로 만들어져 상업용 PP 분말의 흐름특성을 향상시켜 SLS 3-D 프린팅용 분말 recoating 특성이 개선됨을 알 수 있었다. PP/PE 공중합체의 낮은 용융온도와 냉결정화온도는 PP/PE 공중합체 분말이 바인더로 낮은 온도에서 상업용 PP 분말 융착을 가능하게 하여 융착 후 냉각 과정 중 발생하는 융착층의 치수변형을 최소화할 수 있어 recoating 공정 개선효과를 예측할 수 있다.
Polypropylene/polyethylene (PP/PE) copolymer powder was successfully prepared by solution precipitation method and it was introduced as a binder for sintering commercial PP powder for selective laser sintering (SLS) 3-D printing. Effects of PP/PE copolymer powder on flowability and operation window of SLS 3-D printing were investigated. It was found that PP/PE copolymer powder showed a spherical shape and this resulted in good flowability with the mixing of commercial PP powder. Due to the low melting temperature and cold crystallization temperature of PP/ PE copolymer powder, it may be used as a binder for commercial PP powder to sinter at lower temperature during SLS 3-D printing. Since commercial PP powder can be printed at relatively low processing temperature with the aid of PP/ PE copolymer, the enhancement of dimensional stability in sintered layer was achieved and this could translate into a better powder recoating process in continuous sintering process.
  1. Shofner ML, Lozano K, Rodriguez-Macias FJ, Barrera EV, J. Appl. Polym. Sci., 89(11), 3081 (2003)
  2. Carneiro OS, Silva AF, Gomes R, Mater. Des., 83, 768 (2015)
  3. Lan P, Chou S, Chen L, Gemmill D, Comput. Aided Des., 29, 53 (1997)
  4. Nizam A, Gopai RN, Naing L, Hakim AB, Samsudin AR, Arch. Orofac. Sci., 1, 60 (2006)
  5. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M, Rapid Prototyp. J., 11, 26 (2005)
  6. Kruth J, Wang X, Laoui T, Froyen L, Assem. Autom., 23, 357 (2003)
  7. Park JB, Lee DH, Kang HJ, Polym. Korea, 42(5), 747 (2018)
  8. Wang S, Liu J, Chu L, Zou H, Zhang S, Wu C, Polym. Phys., 55, 320 (2017)
  9. Hollahan JL, US Patent 0039135 A1, 2019.
  10. Santomaso A, Lazzaro P, Canu P, Chem. Eng. Sci., 58(13), 2857 (2003)
  11. Wang R, Wang L, Zhao L, Liu Z, Inter. J. Adv. Manuf. Tech., 33, 498 (2007)
  12. Zarringhalam H, Hopkinson N, Kamperman NF, de Vlieger JJ, Mat. Sci. Eng., 435, 172 (2006)
  13. Ziemian C, Sharma M, Ziemian S, Mechanical Engineering; In Tech: Croatia, pp.159 2012.
  14. Zhu W, Yan C, Shi Y, Wen S, Han C, Cai C, Liu J, Shi Y, Rapid Prototyp. J., 22, 621 (2016)
  15. Mys N, Haverans T, Verberckmoes A, Cardon L, Polymers, 8, 383 (2016)
  16. Berretta S, Evans KE, Ghita O, Eur. Polym., 68, 243 (2015)
  17. Tang X, Qin Y, Xu X, Guo D, Ye W, Wu W, Li R, BioMed Res. Inter. 2019, 2019, 207613 (2019)
  18. Lebrun P, Krier F, Mantanus J, Grohganz H, Yang M, Evard B, Rantanen J, Hubert P, Eur. J. Pharm. Biopharm., 80, 226 (2012)
  19. Anestiev LA, Froyen L, J. Appl. Phys., 1999, 86 (4008)
  20. Park JB, Kang HJ, Polym. Korea., 42, 931 (2018)
  21. ASTM, B527-93. 1993: Standard Test Method for Determination of Tap Density of Metallic Powders and Compounds, West Conshohocken, PA: ASTM.