화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.96, 213-218, April, 2021
Catalytic syngas production from carbon dioxide of two emission source scenarios: techno-economic assessment
E-mail:
We designed process alternativesfor syngas production from carbondioxide (CO2)based on twoemission source scenarios: flue gas (FG) in power plants vs. blast furnace gas (BFG) in ironmaking and steelmaking plants. In the both scenarios CO2 is separated through a monoethanolamine-based chemical absorption system and then converted to carbon monoxide (CO) by reverse water gas shift reaction using Cu/ZnO/Al2O3 catalyst, thereby resultinginasyngasstream(H2:COmolarratio = 2:1).Toreduceenergyrequirementsof theprocess,wedesigned a heat exchanger network for meeting minimum energy consumption by maximizing heat recovery from the process streams. Our economicevaluation results show that theintegrated strategy results minimum sellingprice of $19.31 per GJ (FG scenario) and $16.02 per GJ (BFG scenario).
  1. G.J.-M.I.-J. Jos G.J. Olivier (PBL), Marilena Muntean (IES-JRC), Jeroen A.H.W. Peters (PBL), (2015).
  2. Boisgibault L, COP21 Objectives: Towards a Joint Energy Transition in the Mediterranean p. 8, IPEMED, 2015.
  3. Olivier JG, Janssens-Maenhout G, Peters JA, Trends in Global CO2Emissions: 2012 Report, PBL Netherlands Environmental Assessment Agency, The Hague, 2012.
  4. Metz B, Davidson O, De Coninck H, Loos M, Meyer L, (2005).
  5. Saeidi S, Fazlollahi F, Najari S, Iranshahi D, Klemes JJ, Baxter LL, J. Ind. Eng. Chem., 49, 1 (2017)
  6. Han Y, Wen B, Zhu M, Catalysts, 7, 21 (2017)
  7. Huang C, Chen S, Fei X, Liu D, Zhang Y, Catalysts, 5, 1846 (2015)
  8. Liu X, Song Y, Geng W, Li H, Xiao L, Wu W, Catalysts, 6, 75 (2016)
  9. Vandenbussche KM, Froment GF, J. Catal., 161(1), 1 (1996)
  10. Koh MK, Wong YJ, Chai SP, Mohamed AR, J. Ind. Eng. Chem., 62, 156 (2018)
  11. Ren H, Xu CH, Zhao HY, Wang YX, Liu J, Liu JY, J. Ind. Eng. Chem., 28, 261 (2015)
  12. Bae JW, Kang SH, Lee YJ, Jun KW, J. Ind. Eng. Chem., 15(4), 566 (2009)
  13. Santos S, Gomes J, Bordado J, Technologies, 4, 19 (2016)
  14. Kim H, Lee J, Lee S, Lee IB, Park JH, Han J, Energy, 88, 756 (2015)
  15. Greer T, Bedelbayev A, Igreja JM, Gomes JF, Lie B, Environ.Technol., 31, 107 (2010)
  16. AspenPlusSimulatorV7.3, Aspen Technology Inc., Cambridge, 2011.
  17. De Winter J, Prosess simulering av SEWGS teknologi for bruk i stalindustrien p. 131, (2014).
  18. Kim J, Johnson TA, Miller JE, Stechel EB, Maravelias CT, Energy Environ. Sci., 5, 8417 (2012)
  19. Rao AB, Rubin ES, Berkenpas MB, An Integrated Modeling Framework For Carbon Management Technologies, (2004).
  20. Han J, Energy Conv. Manag., 139, 135 (2017)
  21. Lee JK, Lee IB, Han JH, J. Ind. Eng. Chem., 75, 77 (2019)
  22. AspenProcessEconomicAnalyzerV7.3, Aspen Technology Inc., Cambridge, 2011.
  23. Humbird D, Davis R, Tao L, et al., National Renewable Energy Laboratory (NREL), Golden, CO, 2011.
  24. AspenEnergyAnalyzerV7.3, Aspen Technology Inc., Cambridge, 2011.