- Previous Article
- Next Article
- Table of Contents
Korean Chemical Engineering Research, Vol.59, No.2, 296-303, May, 2021
Cu-La-Al/honeycomb 촉매를 이용한 저독성 추진제 분해
Decomposition of Low-toxic Propellant by Cu-La-Al/honeycomb Catalysts
E-mail:
초록
본 연구의 목적은 저독성 추진제인 ammonium dinitramide (ADN) 기반 액체 추진제 분해용 촉매로서 Cu가 담지된 honeycomb 촉매의 적용 가능성을 고찰하는 것이다. honeycomb 지지체 위에 구리, 란타늄 및 알루미나 혼합물을 wash coating 방법으로 담지하여 Cu-La-Al/honeycomb 촉매를 제조하였다. 금속 담지량이 Cu-La-Al/honeycomb 촉매의 물리·화학적 특성에 미치는 영향을 분석하였으며, ADN 기반 액체 추진제의 저온 분해 성능에 미치는 영향을 고찰하였다. Wash coating의 횟수가 증가할수록 금속의 담지량이 증가하였으며, 활성금속인Cu의 담지량을 4.1 wt%까지 증가시킬 수 있었다. Cu-La-Al/honeycomb 촉매의 BET 표면적은 3.1~4.1 m2/g 범위 내에 있었으며, 미세기공은 거의 존재하지 않으면서 약 20~200 nm 범위의 메조기공과 거대기공이 발달한 기공 구조를 가지고 있음을 확인하였다. Cu (2.7 wt%)-La-Al/honeycomb 촉매가 ADN 기반 액체 추진제의 분해 반응에서 활성이 가장 뛰어났으며, 그 이유는 표면적과 기공부피가 가장 크고 메조기공과 거대기공이 가장 잘 발달했기 때문으로 해석할 수 있다.
The objective of this study is to investigate the applicability of a Cu-supported honeycomb catalyst as a catalyst for decomposition of a low toxic liquid propellant based on ammonium dinitramide (ADN). A mixture of copper, lanthanum, and alumina was supported on the honeycomb support by wash coating to prepare a Cu-La-Al/ honeycomb catalyst. We elucidated that the effect of metal loading on the physicochemical properties of Cu-La-Al/ honeycomb catalyst and catalytic performance in decomposition of the ADN-based liquid propellant. As the number of wash coatings increased, the amount of active metal Cu was increased to 4.1 wt%. The BET surface area of the Cu-La-Al/honeycomb catalyst was in the range of 3.1~4.1 m2/g. The micropores were hardly present in Cu-La-Al/honeycomb catalysts, however, the mesopores and macropores were well developed. The Cu (2.7 wt%)-La-Al/honeycomb catalyst exhibited the highest activity in the decomposition of the ADN-based liquid propellant, which is attributed to the largest surface area, the largest pore volume, and the well-developed mesopores and macropores.
- Maleix C, Chabernaud P, Brahmi R, Beauchet R, et al., Acta Astronaut., 158, 407 (2019)
- SoaresNetor TG, Gobbo-Ferreirar J, Cobo AJG, Cruz GM, Brazilian J. Chem. Eng., 20(3), 273 (2003)
- Spores RA, Masse R, Kimbrel S, McLean C, 49th AIAA/ASME/SAE/ASEE Joint of Propulsion Conference, July, Orlando (2015).
- Jang IJ, Jang YB, Shin HS, Shin NR, Kim SK, Yu MJ, Cho SJ, Proceedings of the 18th International Conference on Composite Materials, August, Jeju (2011).
- Amrousse R, Hori K, Fetimi W, Farhat K, Appl. Catal. B: Environ., 127, 121 (2012)
- Hong S, Heo S, Kim W, Jo YM, Park Y, Jeon J, Catalysts, 9, 80 (2019)
- Chai WS, Cheah KH, Koh KS, Chin J, Chik TFWK, Chem. Eng. J., 296, 19 (2016)
- Tanaka N, Matsuo T, Furukawa K, Nishida M, Suemori S, Yasutake A, Mitsubishi Heavy Industries Technical Review., 48(4), 44 (2011).
- McLean CH, Deininger WD, Joniatis J, Aggarwal PK, et al., 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July, Cleveland (2014).
- Ide Y, Takahashi T, Iwai K, Nozoe K, Habu H, Tokudome S, Procedia Eng., 99(2014), 332 (2015)
- Xiaoguang REN, Minghui LI, Aiqin W, Lin LI, Xiaodong W, Tao Z, Chinese J. Catal., 28(1), 1 (2007)
- Kang S, Master Dissertation, Korea Advanced Institute of Science and Technology, Daejeon, Korea (2012).
- Agnihotri R, Oommen C, RSC Adv., 8(40), 22293 (2018)
- Yang R, Thakre P, Yang V, Combust., Explos. Shock Waves, 41, 657 (2005)
- Hong S, Heo S, Jo YM, Kim T, Jeon J, Korean Soc. Propuls. Eng., 20(7), 1319 (2016)
- Zhang T, Li GX, Yu YS, Sun ZY, Wang M, Chen J, Energy Conv. Manag., 87, 965 (2014)
- Kleimark J, Delanoe R, Demaire A, Brinck T, Theor. Chem. Acc., 132(12), 1412 (2013)
- Kim WR, Park MJ, Kim SH, Jeon JK, Jo YM, Appl. Chem. Eng., 30(5), 591 (2019)
- Amrousse R, Katsumi T, Itouyama N, Azurna N, Kagawa H, Hatai K, Ikeda H, Hori K, Combust. Flame, 162(6), 2686 (2015)
- Vyazovkin S, Wight CA, J. Phys. Chem. A, 101(31), 5653 (1997)
- Gronland TA, Westerberg B, Bergman G, Anflo K, Brandt J, et al., US Patent No. 7,137,244(2006).
- Giani L, Cristiani C, Groppi G, Tronconi E, Appl. Catal. B: Environ., 62(1-2), 121 (2006)
- Jiang P, Lu G, Guo Y, Guo Y, Zhang S, Wang X, Surf. Coat. Technol., 190(2-3), 314 (2005)
- Choi HT, Mok JK, Lee EH, Yoo JS, Lee JW, Korean Soc. Energy., 4(2), 288 (1995)
- Yoo DS, Jeon JK, Clean Technol., 25(3), 256 (2019)
- Meille V, Appl. Catal. A: Gen., 315, 1 (2006)
- Toyao T, Jing Y, Kon K, Hayama T, Nagaoka S, Shimizu K, Chem. Lett., 47(8), 1036 (2018)
- Kim M, Kim J, Kim H, Lee J, Park YC, Jeon JK, J. Nanosci. Nanotechnol., 20, 4466 (2020)
- Heo SJ, Kim MJ, Lee JS, Park YC, Jeon JK, Korean J. Chem. Eng., 36(5), 660 (2019)
- Thomms M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS, Pure Appl. Chem., 87(9-10), 1051 (2015)
- Renuga D, Jeyasundari J, Athithan AS, Jacob YBA, Mater. Res. Express, 7(4), 045007 (2020)