화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.6, 353-366, June, 2021
Photocatalytic Generated Oxygen Species Properties by Fullerene Modified Two-Dimensional MoS2 and Degradation of Ammonia Under Visible Light
E-mail:,
In this study, photocatalytic degradation of ammonia in petrochemical wastewater is investigated by solar light photocatalysis. Two-dimensional ultra-thin atomic layer structured MoS2 are synthesized via a simple hydrothermal method. We examine all prepared samples by means of physical techniques, such as SEM-EDX, HRTEM, FT-IR, BET, XRD, XPS, DRS and PL. And, we use fullerene modified MoS2 nanosheets to enhance the activity of photochemically generated oxygen (PGO) species. Surface area and pore volumes of the MoS2-fullerene samples significantly increase due to the existence of MoS2. And, PGO oxidation of MB, TBA and TMST, causing its concentration in aqueous solution to decrease, is confirmed by the results of PL. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and the PGO effect increase in the case with modified fullerene. The experimental results show that this heterogeneous catalyst has a degradation of 88.43% achieved through visible light irradiation. The product for the degradation of NH3 is identified as N2, but not NO2-or NO3-.
  1. Ma Y, Wang ZH, Jia YL, Wang LN, Yang M, Qi YX, Bi YP, Carbon, 114, 591 (2017)
  2. Meeroff DE, Bloetscher F, Reddy DV, Gasnier F, Jain S, McBarnette A, Hamaguchi H, J. Hazard. Mater., 209-210, 299 (2012)
  3. Lin YC, Zhang WJ, Huang JK, Liu KK, Lee YH, Liang CT, Chu CW, Li LJ, Nanoscale, 4, 6637 (2012)
  4. Gao DQ, Si MS, Li JY, ZhanG J, ZhanG ZP, Yang ZL, Xue DS, Nanoscale Res. Lett., 8, 129 (2013)
  5. Li H, Yin ZY, He QY, Li H, Huang X, Lu G, Fam DWH, Tok AIY, Zhang Q, Zhang H, Small, 8, 63 (2012)
  6. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C, Galli G, Wang F, Nano Lett., 10, 1271 (2010)
  7. Lee C, Yan H, Bru=s LE, Heinz LE, Hone TF, Hone J, Ryu S, ACS Nano, 4, 2695 (2010)
  8. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A, Nature Nanotechnol., 6, 147 (2011)
  9. Frey GL, Elani S, Homyonfer M, Feldman Y, Tenne R, Phys. Rev. B, 57, 6666 (1998)
  10. Mak KF, Lee C, Hone J, Shan J, Heinz TF, Phys. Rev. Lett., 105, 136805 (2010)
  11. Oh WC, Chen ML, Cho KKY, Kim CL, Meng ZD, Zhu L, Chinese J. Catal., 32, 1577 (2011)
  12. Meng ZD, Zhu L, Choi JG Chen ML, Oh WC, J. Mater. Chem., 21, 7596 (2011)
  13. Deutsch D, Tarabek J, Krause M, Janda P, Dunsch L, Carbon, 42, 1137 (2004)
  14. Davis JJ, Hill HA, Kurz A, Leighton AD, Safronov AY, J. Electroanal. Chem., 429(1-2), 7 (1997)
  15. Wang J, Guo YW, Liu B, Jin XD, Liu LJ, Xu R, Kong YM, Wang BX, Ultrason. Sonochem., 18, 177 (2011)
  16. Halim AA, Aziz HA, Johari MAM, Ariffin KS, Adlan MN, J. Hazard. Mater., 175(1-3), 960 (2010)
  17. Li Q, Newberg TJ, Walter EC, Hemminger JC, Pender RM, Nano Lett., 4, 277 (2004)
  18. Wang HD, Xu BS, Liu JJ, Zhuang DM, Mater. Chem. Phys., 91(2-3), 494 (2005)
  19. Zhang XW, Zhou MH, Lei LC, Carbon, 43, 1700 (2005)
  20. Li Q, Newberg TJ, Walter EC, Hemminger JC, Pender RM, Nano Lett., 4, 277 (2004)
  21. Ataca C, Sahin H, Akturk E, Ciraci S, J. Phys. Chem. C, 115, 3934 (2011)
  22. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F, Nano Lett., 10, 1271 (2010)
  23. Martinez-Alonso A, Tascon JMD, Bottani EJ, J. Phys. Chem. B, 105(1), 135 (2001)
  24. Shidpour R, Manteghian M, Nanoscale., 2, 1429 (2010)
  25. Pan H, Zhang YW, J. Mater. Chem., 22, 7280 (2012)
  26. Li YF, Zhou Z, Zhang SB, Chen ZF, J. Am. Chem. Soc., 130(49), 16739 (2008)
  27. Chastain JJ, King RC, Handbook of X-ray photoelectron spectroscopy, p. 157, USA: Physical Electronics, Inc., 1995.
  28. Suto S, Sakamoto K, Kondo D, Wakita T, Kimura A, Kakizaki A, Surf. Sci., 438, 242 (1999)
  29. Zhai RS, Das A, Hsu CK, Han CC, Canteenvala T, Chiang LY, Chuang TJ, Carbon, 42, 395 (2004)
  30. Stender CL, Greyson EC, Babayan Y, Odom TW, Adv. Mater., 17(23), 2837 (2005)
  31. Kang N, Paudel HP, Leuenberger MN, Tetard L, Khondaker SI, J. Phys. Chem. C, 118, 21258 (2014)
  32. Chen YJ, Tian GH, Shi YH, Xiao YT, Fu HG, Appl. Catal. B: Environ., 164, 40 (2015)
  33. Meng ZD, Ghosh T, Zhu L, Choi JG, Park CY, Oh WC, J. Mater. Chem., 22, 16127 (2012)
  34. Miles DL, Espejo C, Analyst, 102, 104 (1977)
  35. Zhu X, Castleberry SR, Nanny MA, Butler EC, Environ. Sci. Technol., 39, 3784 (2005)
  36. Zhou Y, Xiao B, Liu SQ, Meng ZD, Chen ZG, Zou CY, Liu CB, Chen F, Zhou X, Chem. Eng. J., 283, 266 (2016)
  37. Lin HT, Chen XY, Li HL, Yang M, Qi YX, Mater. Lett., 64, 1748 (2010)
  38. Goki E, Hisato Y, Damien V, Takeshi F, Chen MW, Manish C, Nano Lett., 11, 5111 (2011)
  39. Meng ZD, Peng MM, Zhu L, Oh WC, Appl. Catal. B: Environ., 113-114, 141 (2012)
  40. Frame FA, Osterloh FE, J. Phys. Chem. C, 114, 10628 (2010)