화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.100, 391-398, August, 2021
Efficient mercury removal from flue gas using high-quality spinel mixed ferrites obtained from wastewater
E-mail:
High-quality spinel mixed ferrites (M-Fe) are obtained from the electroplating wastewater, which are then used as adsorbents for the removal of elemental mercury (Hg0) in the flue gas to simultaneously realize the purpose of waste resource utilization and pollution control. In the “ferrite process”, through adjusting the dosages of ferrous sulfate (FeSO4ㆍ7H2O), the chromium (Cr) in wastewater can be fully recycled to synthesize the M-Fe adsorbents with good crystal morphology and chemical stability, and they can be easily separated by applying a magnetic field. Hg0 removal experiments indicated that the feeding mass ratio of FeSO4ㆍ7H2O: Cr6+ and temperatures had great influence on mercury removal efficiency, and the M-Fe adsorbents with FeSO4ㆍ7H2O: Cr6+ mass ratio of 100: 1 (M-Fe (100)) had the highest Hg0 removal performance with nearly 100% at 100℃. In addition, M-Fe (100) presented good sulfur resistance, which remained above 90% Hg0 removal efficiency after SO2 injection, and it can recover activity when stopping SO2. The XPS and desorption dynamics analysis showed mercury existed in the form of physically and chemically adsorbed states. Adsorption kinetic studies manifested that surface active sites were the adsorption rate controlling step, and inner active sites played an important role in mercury adsorption process. Mercury equilibrium analysis indicated mercury amount during adsorption and desorption process was approximately identical, manifesting M-Fe (100) was well recyclable magnetic adsorbent.
  1. Chalkidis A, Jampaiah D, Hartley PG, Sabri YM, Bhargava SK, J. Hazard. Mater., 382, 121036 (2020)
  2. Jiang X, Wang F, Waste Dispos. Sustain. Energy, 1, 127 (2019)
  3. Qu Z, Xie JK, Xu HM, Chen WM, Yan NQ, Energy Fuels, 29(10), 6187 (2015)
  4. Zhao S, Chen D, Xu H, Mei J, Qu Z, Liu P, Cui Y, Yan N, Chemosphere, 197, 65 (2018)
  5. Ma YP, Mu BL, Zhang XJ, Xu HM, Qu Z, Gao L, Li B, Tian JJ, Fuel, 239, 579 (2019)
  6. Chalkidis A, Jampaiah D, Hartley PG, Sabri YM, Bhargava SK, Fuel Process. Technol., 193, 317 (2019)
  7. Zhao SJ, Mei J, Xu HM, Liu W, Qu Z, Cui Y, Yan NQ, J. Hazard. Mater., 351, 301 (2018)
  8. Li H, Wu CY, Li Y, Zhang J, Environ. Sci. Technol., 45, 7394 (2011)
  9. Chen CM, Cao Y, Liu ST, Chen JM, Jia WB, Fuel Process. Technol., 181, 268 (2018)
  10. Xu W, Wang H, Zhu T, Kuang J, Jing P, J. Environ. Sci., 25, 393 (2013)
  11. Li YN, Duan YF, Wang H, Zhao SL, Chen MM, Liu M, Wei HQ, Energy Fuels, 31(9), 9745 (2017)
  12. Wang H, Wang S, Duan YF, Li YN, Xue Y, Ying ZF, Energy Fuels, 32(2), 1900 (2018)
  13. Ma YP, Mu BL, Zhang XJ, Yuan DL, Ma C, Xu HM, Qu Z, Fang SM, Chem. Eng. J., 358, 1499 (2019)
  14. Abad-Valle P, Lopez-Anton MA, Diaz-Somoano M, Martinez-Tarazona MR, Chem. Eng. J., 174(1), 86 (2011)
  15. Padak B, Wilcox J, Carbon, 47, 2855 (2009)
  16. Xu HM, Zhang HB, Zhao SJ, Huang WJ, Qu Z, Yan NQ, Chem. Eng. J., 299, 142 (2016)
  17. Xu H, Qu Z, Zong C, Huang W, Quan F, Yan N, Environ. Sci. Technol., 49, 6823 (2015)
  18. Liao Y, Xiong SC, Dang H, Xiao X, Yang SJ, Wong PK, J. Hazard. Mater., 299, 740 (2015)
  19. Yang SJ, Guo YF, Yan NQ, Qu Z, Xie JK, Yang C, Jia JP, J. Hazard. Mater., 186(1), 508 (2011)
  20. Ye Z, Yin X, Chen L, He X, Lin Z, Liu C, Ning S, Wang X, Wei Y, J. Clean Prod., 236, 117631 (2019)
  21. Chen D, Hou J, Yao LH, Jin HM, Qian GR, Xu ZP, Sep. Purif. Technol., 75(2), 210 (2010)
  22. Gawande MB, Branco PS, Varma RS, Chem. Soc. Rev., 42, 3371 (2013)
  23. Huang S, Gu L, Zhu N, Feng K, Yuan H, Lou Z, Li Y, Shan A, Green Chem., 16, 2696 (2014)
  24. Chen Y, Tang Y, Zhang H, Fu L, Tribol. Lett., 61, 1 (2016)
  25. Liu S, Dong ZB, Xiang D, Jiang Y, Tao QB, Cao Y, Appl. Catal. B: Environ., 238, 647 (2018)
  26. Kaspar P, Sobola D, Dallaev R, Ramazanov S, Nebojsa A, Rezaee S, Grmela L, Appl. Surf. Sci., 493, 673 (2019)
  27. Yang S, Guo Y, Yan N, Wu D, He H, Qu Z, YAng C, Zhou Q, Jia J, ACS Appl. Mater. Interfaces, 3, 209 (2011)
  28. Suresh R, Giribabu K, Manigandan R, Mangalaraja RV, Solorza JY, Stephen A, Narayanan V, Solid State Sci., 68, 39 (2017)
  29. Li CM, Yu J, Li WS, He Y, Qiu YL, Li P, Wang C, Huang FL, Wang DL, Gao SQ, Chem. Eng. J., 350, 1103 (2018)
  30. Zhang SH, Wu MF, Tang TT, Xing QJ, Peng CQ, Li F, Liu H, Luo XB, Zou JP, Min XB, Luo JM, Chem. Eng. J., 335, 945 (2018)
  31. Zhao SJ, Chen WM, Huang WJ, Xie JK, Qu Z, Yan NQ, Appl. Catal. A: Gen., 564, 64 (2018)
  32. Zhao S, Qu Z, Yan N, Li Z, Zhu W, Pan J, Xu J, Li M, RSC Adv., 5, 30841 (2015)
  33. Zhou Q, Duan YF, Hong YG, Zhu C, She M, Zhang J, Wei HQ, Fuel Process. Technol., 134, 325 (2015)
  34. Hsi HC, Chen CT, Fuel, 98, 229 (2012)
  35. Liu Z, Li Z, Xie X, Yang S, Fei J, Li Y, Xu Z, Liu H, Environ. Sci. Technol., 54, 604 (2020)
  36. Ma Y, Mu B, Zhang X, Zhang H, Xu H, Qu Z, Gao L, J. Environ. Sci., 79, 111 (2019)
  37. Yuan Y, Xu HM, Liu W, Chen LH, Quan ZW, Liu P, Qu Z, Yan NG, J. Colloid Interface Sci., 536, 431 (2019)
  38. Dang H, Liao Y, Ng TW, Huang GC, Xiong SC, Xiao X, Yang SJ, Wong PK, Fuel Process. Technol., 142, 345 (2016)
  39. Yang Z, Li H, Qu W, Zhang M, Feng Y, Zhao J, Yang J, Shih K, Environ. Sci. Technol., 53, 3250 (2019)